Font Size: a A A

Factor models, VARMA processes and parameter instability with applications in macroeconomics

Posted on:2012-07-08Degree:Ph.DType:Thesis
University:Universite de Montreal (Canada)Candidate:Stevanovic, DaliborFull Text:PDF
GTID:2450390011955928Subject:Economics
Abstract/Summary:
As information technology improves, the availability of economic and finance time series grows in terms of both time and cross-section sizes. However, a large amount of information can lead to the curse of dimensionality problem when standard time series tools are used. Since most of these series are highly correlated, at least within some categories, their co-variability pattern and informational content can be approximated by a smaller number of (constructed) variables. A popular way to address this issue is the factor analysis. This framework has received a lot of attention since late 90's and is known today as the large dimensional approximate factor analysis.;Given the availability of data and computational improvements, a number of empirical and theoretical questions arises. What are the effects and transmission of structural shocks in a data-rich environment? Does the information from a large number of economic indicators help in properly identifying the monetary policy shocks with respect to a number of empirical puzzles found using traditional small-scale models? Motivated by the recent financial turmoil, can we identify the financial market shocks and measure their effect on real economy? Can we improve the existing method and incorporate another reduction dimension approach such as the VARMA modeling? Does it help in forecasting macroeconomic aggregates and impulse response analysis? Finally, can we apply the same factor analysis reasoning to the time varying parameters? Is there only a small number of common sources of time instability in the coefficients of empirical macroeconomic models?;This thesis concentrates on the structural factor analysis and VARMA modeling and answers these questions through five articles. The first two articles study the effects of monetary policy and credit shocks in a data-rich environment. The third article proposes a new framework that combines the factor analysis and VARMA modeling, while the fourth article applies this method to measure the effects of credit shocks in Canada. The contribution of the final chapter is to impose the factor structure on the time varying parameters in popular macroeconomic models, and show that there are few sources of this time instability.;The first article analyzes the monetary transmission mechanism in Canada using a factor-augmented vector autoregression (FAVAR) model. We estimate a FAVAR model using large sets of monthly and quarterly macroeconomic time series. We find that the information summarized by the factors is important to properly identify the monetary transmission mechanism.;In the second paper we examine the dynamic effects and the propagation of credit shocks using a large data set of U.S. economic and financial indicators in a structural factor model.;In third article, we study the relationship between VARMA and factor representations of a vector stochastic process, and propose a new class of factor-augmented VARMA (FAVARMA) models. We start by observing that in general multivariate series and associated factors do not both follow a finite order VAR process. Indeed, we show that when the factors are obtained as linear combinations of observable series, their dynamic process is generally a VARMA and not a finite-order VAR as usually assumed in the literature. Second, we show that even if the factors follow a finite-order VAR process, this implies a VARMA representation for the observable series. As result, we propose the FAVARMA framework that combines two parsimonious methods to represent the dynamic interactions between a large number of time series: factor analysis and VARMA modeling. We apply our approach in two pseudo-out-of-sample forecasting exercises using large U.S. and Canadian monthly panels taken from Boivin, Giannoni and Stevanović (2010, 2009) respectively.;In fourth article we are interested in identifying and measuring the effects of credit shocks in Canada in a data-rich environment. In order to incorporate information from a large number of economic and financial indicators, we use the structural factor-augmented VARMA model. In the theoretical framework of the financial accelerator, we approximate the external finance premium by credit spreads.;The behavior of economic agents and environment may vary over time (monetary policy strategy shifts, stochastic volatility) implying parameters' instability in reduced-form models. Standard time varying parameter (TVP) models usually assume independent stochastic processes for all TVPs. In the final article, I show that the number of underlying sources of parameters' time variation is likely to be small, and provide empirical evidence on factor structure among TVPs of popular macroeconomic models. (Abstract shortened by UMI.).
Keywords/Search Tags:Factor, Economic, VARMA, Models, Time, Instability, Process, Information
Related items