Font Size: a A A

Towards Quantum Computing With Light

Posted on:2012-08-10Degree:Ph.DType:Thesis
University:University of VirginiaCandidate:Pysher, MatthewFull Text:PDF
GTID:2450390011951924Subject:Engineering
Abstract/Summary:
This thesis presents experimental progress towards the realization of an optical quantum computer. Quantum computers replace the bits used in classical computing with quantum systems and promise an exponential speedup over their classical counterparts for certain tasks such as integer factoring and the simulation of quantum systems. A recently proposed quantum computing protocol known as one-way quantum computing has paved the way for the use of light in a functional quantum computer. One-way quantum computing calls for the generation of a large (consisting of many subsystems) entangled state known as a cluster state to serve as a quantum register. Entangled states are comprised of subsystems linked in such a way that the state cannot be separated into individual components. A recent proposal has shown that is possible to make arbitrarily large cluster states by linking the resonant frequency modes of a single optical parametric oscillator (OPO). In this thesis, we present two major steps towards the creation of such a cluster state. Namely, we successfully design and test the exotic nonlinear crystal needed in this proposal and use a slight variation on this proposal to simultaneously create over 15 four-mode cluster states in a single OPO. We also explore the possibility of scaling down the physical size of an optical quantum computer by generating squeezed states of light in a compact optical waveguide. Additionally, we investigate photon-number-resolving measurements on continuous quantum light sources, which will be necessary to obtain the desired speedups for a quantum computer over a classical computer.
Keywords/Search Tags:Quantum, Computer, Towards
Related items