Font Size: a A A

Novel optical access network architectures and transmission system technologies for optical fiber communications

Posted on:2007-01-17Degree:Ph.DType:Thesis
University:The Chinese University of Hong Kong (Hong Kong)Candidate:Wang, ZhaoxinFull Text:PDF
GTID:2448390005468859Subject:Engineering
Abstract/Summary:
Currently, optical communications plays an important role in the transmission aspect of backbone fiber networks. However, there still remain two challenges in this field: one is the bottleneck between high-capacity local area networks (LANs) and the backbone network, where the answer is the broadband optical fiber access networks; the other is the bottleneck of low-speed electrical signal processing in high capacity optical networks, where one possible solution is all-optical nonlinear signal processing. This thesis will cover both of the two topics. In the first topic, the emphasis will be put on the novel optical access network infrastructure design to improve the access network reliability and functionality as well as the reduction of system complexity. In the second topic, the focus is how to utilize the newly-emerging photonic devices or newly-designed configurations to improve the performance of current optical signal processing subsystems for applications in lightwave transmission systems.;In the area of broadband optical fiber access networks, two aspects are considered: survivability and monitoring function. For the first part, several new network protection schemes among various access network topologies (i.e. tree and ring) are proposed and experimentally demonstrated, which could reduce the access network cost and simplifying the operation of the access network. For the second part, an interesting in-service fault surveillance scheme in the current TDM-PON is proposed via analyzing the composite radio-frequency (RF) spectrum of the common supervisory channel at the central office (CO). Experiment proves its effectiveness with negligible influence on the signal channels. In addition, a system demonstration of the WDM-based optical broadband access network with automatic optical protection function is presented, showing the potential of WDM technologies in the broadband optical access networks.;In the area of nonlinear optical signal processing, the technology innovation is in two areas: new architecture design and the new photonic devices. For the issue of architecture design, the focus is on the Nonlinear Optical Loop Mirror (NOLM) structure. A new polarization-independent OTDM demultiplexing scheme is proposed and demonstrated by incorporating a polarization-diversity loop into a conventional NOLM, which offers stable operation using the conventional components without sacrificing the operation speed or structural simplicity. In another study the design of a novel OFSK transmitter based on phase-modulator-embedded NOLM is conceived and implemented, which features data-rate transparent, continuous tuning of the wavelength spacing and stable operation. For the aspect of new photonic devices, this thesis focuses on the applications of photonic crystal fibers (PCF). In one work, a relatively short-length of dispersion-flattened high-nonlinearity PCF (gamma=11.2 (W-km)-1, D<-1 ps/nm/km 1500-1600 nm, S<1 x 10-3 ps/km/nm2) is integrated into a dispersion-imbalanced loop mirror (DILM) to form a nonlinear intensity discriminator and its application in the nonlinear suppression of the incoherent interferometric crosstalk has been successfully demonstrated. The special characteristics of the PCF ensure a broadband signal quality improvement and make the DILM more compact and stable. In the other work, the small birefringence of this PCF helps to simply achieve the polarization-insensitive wide-band wavelength converter based on four-wave-mixing in PCF.;In summary, this thesis introduces a series of novel optical access network architecture designs and transmission system technologies for optical fiber communications and discusses their feasibilities in practice from the research perspective. We hope that these proposed technologies can contribute to the further developments in this field.
Keywords/Search Tags:Optical, Network, Fiber, Technologies, Transmission, System, PCF, Architecture
Related items