Font Size: a A A

Mecanismes fondamentaux et dynamique d'interdiffusion dans les boites quantiques auto-assemblees InAs/InP

Posted on:2009-05-03Degree:Ph.DType:Thesis
University:Ecole Polytechnique, Montreal (Canada)Candidate:Dion, CarolyneFull Text:PDF
GTID:2448390002992943Subject:Physics
Abstract/Summary:
This thesis contributes both to the understanding of the fundamental mechanisms driving the intermixing process in the InAs/InP quantum dot (QD) system and to the development of effective intermixing techniques for the integration of these structures into the next generations of optoelectronic devices for optical telecommunications. More specifically, we study the interdiffusion occurring (i) during heterostructure growth and ( ii) under thermal annealing in structures subjected to grown-in defects (GID) introduced into epitaxial layer during growth at reduced temperatures, or damage created by low-energy phosphorus ion implantation (LEII). Interdiffusion is probed using photoluminescence (PL) spectroscopy in conjunction with calculations of optical transition energies obtained from a tight-binding model. These investigations are completed by structural analyses using transmission electron microscopy (TEM).;Keywords: Semiconductors, InAs, InP, quantum dots, diffusion, intermixing, photoluminescence, transmission electron microscopy.;The characterization of the self-assembled QDs produced from the heteroepitaxy of pure InAs on InP reveals that the structures are significantly interdiffused. All structures in a given sample have the same phosphorus concentration, with [P] varying from 6 to 10% depending on growth conditions. We suggest that such substantial P incorporation into InAs during heteroepitaxy results from the surface As/P exchange process as well as strain-driven alloying. We show that GID and LEII-mediated intermixing techniques are both promising for spatially selective band gap tuning of InAs/InP QDs, producing lower annealing temperature threshold for detectable PL modification and PL blueshifts up to ∼ 270 meV. Upon annealing, PL spectra from standard and GID samples exhibit progressive blueshifts without bandwidth broadening. In contrast, PL spectra from LEII samples show the rise of a high energy peak superimposed to the original spectrum, leading to an apparent overall blueshift with significant bandwidth broadening. On the other hand, as confirmed by TEM, the QD shape is found to convert from a truncated pyramid in the as-grown state into either a dome or double-convex lens in annealed GID and LEII samples, respectively. Based on the evolution of PL characteristics and QDs morphology, we demonstrate that thermally-induced intermixing and GID-enhanced intermixing are governed by the transport of group-V interstitials emanating from the InP epilayer, while LEII-enhanced intermixing is dominated by the motion of group-V vacancies released by the implantation damage. Finally, we determine the diffusion coefficients corresponding to these two atomistic diffusion mechanisms.
Keywords/Search Tags:Inas, Inp, Diffusion, Intermixing, GID
Related items