Font Size: a A A

An in vitro evaluation of various biomaterials for the development of a tissue-engineered lacrimal gland

Posted on:2009-09-07Degree:Ph.DType:Thesis
University:University of Southern CaliforniaCandidate:Selvam, ShivaramFull Text:PDF
GTID:2444390005456693Subject:Health Sciences
Abstract/Summary:
The most common cause of ocular morbidity in developed countries is dry eye, many cases of which are due to lacrimal insufficiency. It has been established that lacrimal insufficiency results from processes caused by both immune-related and non-immune related events such as Sjogren's syndrome, Stevens-Johnson syndrome, chemical and thermal injuries and ocular cicatricial pemphigoid. Patients with these conditions would benefit from repair of their damaged lacrimal tissue by the creation of a replacement for the lacrimal gland.;The new field of tissue engineering built on the interface between principles and methods of the life sciences with those of engineering to develop biocompatible materials has created the possibility for repairing or replacing damaged tissues. This thesis explores the use of tissue engineering principles for the development of a tissue-engineered lacrimal gland. This thesis also contributes to the development of a novel model for addressing lacrimal gland physiology and epithelial fluid transport.;The first part of the research work focused on the evaluation of morphological and physiological properties of purified lacrimal gland acinar cells (pLGACs) cultured on various biopolymers: silicone, collagen I, poly-D,L-lactide-co-glycolide (PLGA; 85:15 and 50:50), and poly-L-lactic acid (PLLA) in the presence and absence of an extracellular matrix, MatrigelRTM. Results indicated that PLLA demonstrated the best support expression of acinar cell-like morphology.;The second part demonstrated the ex vivo reconstitution of an electrophysiologically functional lacrimal gland tissue on porous polyester membrane scaffolds. Results showed that pLGACs were capable of establishing continuous epithelial monolayers that generate active ionic fluxes consistent with current models for Na +-dependent Cl-- secretion.;The third part outlined the fabrication of porous PLLA membranes, the optimal biomaterial for culturing lacrimal epithelial cells. Microporous PLLA-Polyethylene glycol (PEG) blend membranes (mpPLLAbm) with interconnected pores were prepared by the water extraction of PEG from solution cast blend membranes using the solvent-cast/particulate leaching technique. Diffusion experiments on mpPLLAbm (57.1/42.9 wt%) were performed to demonstrate that the membrane was permeable to glucose, L-tryptophan, and dextran.
Keywords/Search Tags:Lacrimal gland, Tissue, PLLA, Development
Related items