Font Size: a A A

Modeling of a Head-Neck Assembly Drop Tower Impact Test Using ABAQU

Posted on:2018-07-16Degree:M.SType:Thesis
University:The University of MaineCandidate:Owaid, Hussein SharqiFull Text:PDF
GTID:2444390002498462Subject:Mechanical engineering
Abstract/Summary:
There are numerous potential causes of traumatic brain injury (TBI) and concussions, including traffic accidents, contact during sports and falls. Protection from these injuries is paramount because of the problems that result from TBI, such as loss of thinking and memory capability. Head impact from falls, especially in elderly, can also result in severe to fatal injury and some effects of brain injury are often not visible. For these reasons and more a need exists for protective head gear that can keep persons safe during at risk physical activity and that can protect fall prone persons from accidental injuries.;Part of the development of protective head gear includes standard methods to quantify the effectiveness of the protective device. Many studies have been conducted to design apparatus that can be used to quantify the response including twin wire or monorail drop test apparatus and linear impactors. A combination of experimental and computational approaches can be used to develop new designs in an efficient manner. Experimental validation of head protection is typically done by using a standard apparatus. Accordingly, a validated Finite Element Analysis (FEA) model of the drop test system can be invaluable to new development efforts where FEA computer programs like ABAQUS can be used to save time and cost. The impact resisting material design can be evaluated by FEA prior to fabrication and experimental testing and adjustments made without the expense of a prototype.;The goal of this thesis work is to develop a validated FEA model of the head-neck assembly quantifying both the translational and angular accelerations based upon experimental testing of the apparatus under standard conditions. The translational and angular accelerations can be used to estimate and or mitigate the risk of the head injuries based on several head injury assessment criteria. Most apparatus calibration procedures use a rubber pad as an anvil during the testing. Accordingly, a rubber pad (MEP) was studied using experimental and FEA modeling approaches. The FEA model of a head-neck assembly test apparatus is intended to be used to study headgear response. It was developed to simulate a Hybrid III head/neck assembly drop test apparatus at the University of Maine that is currently being used to quantify the response of soft headgear. Soft headgear is the type that currently is used for soccer and in the design of headgear for elderly. Through this thesis, a finite element model of the head-neck assembly was created and the geometric and material parameters were studied. (Abstract shortened by ProQuest.).
Keywords/Search Tags:Head-neck assembly, Model, Test, Drop, FEA, Using, Impact, Injury
Related items