Font Size: a A A

A tunable protein-based scaffold for the study of central nervous system regeneration

Posted on:2010-10-18Degree:Ph.DType:Thesis
University:Stanford UniversityCandidate:Straley, KarinFull Text:PDF
GTID:2444390002470974Subject:Engineering
Abstract/Summary:
Central nervous system (CNS) injuries pose a significant and potentially debilitating health problem in society today and, to date, no successful clinical repair strategies have been advanced. The development of effective treatments is severely hindered by the quick formation of a complex, inhibitory scar at the site of CNS injury. This scar both physically blocks and chemically suppresses nerve regeneration. It has been hypothesized that combinatorial approaches involving biomaterial scaffolds, cell transplantation, and pro-survival factors, which provide a more permissive growth environment, have the highest chance of stimulating regeneration. The work completed in this thesis focuses on the design and characterization of a biomimetic hydrogel scaffold constructed from chemically crosslinked recombinant proteins. This protein-based scaffold has been designed to offer a flexible platform for the systematic optimization of key scaffold design parameters, such as mechanical strength, degradation, cellular interaction, molecule delivery, and topography. Specifically, a collection of proteins containing sequences previously shown to enhance cell adhesion, to promote neurite extension, and to exhibit varying susceptibility to cleavage by neurite-secreted proteases were synthesized to serve as the polymer backbone for the scaffold. Experiments were conducted to analyze the capacity of scaffolds, constructed from single proteins or mixtures of proteins, to independently control cell behavior, scaffold degradation properties, and scaffold mechanical properties based upon differences in the primary protein sequence and crosslinking conditions. In addition, composite scaffolds constructed by layered spatial deposition of chemically crosslinked, protease-degradable proteins were applied to the formation of dynamic internal, three-dimensional scaffold patterns that can be directly coupled to molecule delivery. Overall, this work demonstrates the tunable and bio-functional nature of these hydrogels and sets the framework for future studies into the development of effective protein-engineered scaffolds for CNS regeneration.
Keywords/Search Tags:Scaffold, CNS, Regeneration
Related items