Font Size: a A A

Efficient Numerical Simulation of Aerothermoelastic Hypersonic Vehicle

Posted on:2018-03-01Degree:Ph.DType:Thesis
University:University of MichiganCandidate:Klock, Ryan JFull Text:PDF
GTID:2442390005458316Subject:Aerospace engineering
Abstract/Summary:
Hypersonic vehicles operate in a high-energy flight environment characterized by high dynamic pressures, high thermal loads, and non-equilibrium flow dynamics. This environment induces strong fluid, thermal, and structural dynamics interactions that are unique to this flight regime. If these vehicles are to be effectively designed and controlled, then a robust and intuitive understanding of each of these disciplines must be developed not only in isolation, but also when coupled. Limitations on scaling and the availability of adequate test facilities mean that physical investigation is infeasible. Ever growing computational power offers the ability to perform elaborate numerical simulations, but also has its own limitations. The state of the art in numerical simulation is either to create ever more high-fidelity physics models that do not couple well and require too much processing power to consider more than a few seconds of flight, or to use low-fidelity analytical models that can be tightly coupled and processed quickly, but do not represent realistic systems due to their simplifying assumptions. Reduced-order models offer a middle ground by distilling the dominant trends of high-fidelity training solutions into a form that can be quickly processed and more tightly coupled.;This thesis presents a variably coupled, variable-fidelity, aerothermoelastic framework for the simulation and analysis of high-speed vehicle systems using analytical, reduced-order, and surrogate modeling techniques. Full launch-to-landing flights of complete vehicles are considered and used to define flight envelopes with aeroelastic, aerothermal, and thermoelastic limits, tune in-the-loop flight controllers, and inform future design considerations. A partitioned approach to vehicle simulation is considered in which regions dominated by particular combinations of processes are made separate from the overall solution and simulated by a specialized set of models to improve overall processing speed and overall solution fidelity. A number of enhancements to this framework are made through 1. the implementation of a publish-subscribe code architecture for rapid prototyping of physics and process models. 2. the implementation of a selection of linearization and model identification methods including high-order pseudo-time forward difference, complex-step, and direct identification from ordinary differential equation inspection. 3. improvements to the aeroheating and thermal models with non-equilibrium gas dynamics and generalized temperature dependent material thermal properties.;A variety of model reduction and surrogate model techniques are applied to a representative hypersonic vehicle on a terminal trajectory to enable complete aerothermoelastic flight simulations. Multiple terminal trajectories of various starting altitudes and Mach numbers are optimized to maximize final kinetic energy of the vehicle upon reaching the surface. Surrogate models are compared to represent the variation of material thermal properties with temperature. A new method is developed and shown to be both accurate and computationally efficient.;While the numerically efficient simulation of high-speed vehicles is developed within the presented framework, the goal of real time simulation is hampered by the necessity of multiple nested convergence loops. An alternative all-in-one surrogate model method is developed based on singular-value decomposition and regression that is near real time.;Finally, the aeroelastic stability of pressurized cylindrical shells is investigated in the context of a maneuvering axisymmetric high-speed vehicle. Moderate internal pressurization is numerically shown to decrease stability, as showed experimentally in the literature, yet not well reproduced analytically. Insights are drawn from time simulation results and used to inform approaches for future vehicle model development.
Keywords/Search Tags:Vehicle, Simulation, Flight, Model, Thermal, Aerothermoelastic, Numerical, Efficient
Related items