Font Size: a A A

Series voltage compensation for doubly-fed induction generator wind turbine low voltage ride-through solution

Posted on:2011-10-18Degree:Ph.DType:Thesis
University:The University of Wisconsin - MilwaukeeCandidate:Abdel-baqi, OmarFull Text:PDF
GTID:2442390002969064Subject:Engineering
Abstract/Summary:
Wind is clean and unlimited free source of energy. But in order for the wind energy to be effectively and efficiently harvest without interruption, the wind generators required to ride-through grid disturbances and support the grid during voltage sag events. The Doubly-Fed Induction Generator (DFIG) is known for its poor response to the voltage sags. This work develops an approach to provide a robust ride through technique for the DFIG during different types of voltage sags.;In this work, a mathematical model for the DFIG is developed and used to analyze the voltage sags effects. The DFIG stator flux is the main state that affects the system during the voltage sags. A component of the stator flux declines with the slow time constant of the generator during sudden voltage sag and forces a large rise of current in the rotor windings. This current rise damages double conversion power electronics converter connected to the rotor winding.;The existing techniques for Low Voltage Ride Through (LVRT) solutions have many drawbacks. In brief, they introduce undesirable spikes in generator torque and currents. In addition, they do not provide support to the grid during low voltage conditions.;In order to mitigate the effect of the slow declining component of the stator flux during voltage sags, the system is augmented with a series converter on stator circuitry. The converter injects a voltage on the stator to correct the air gap flux and to ultimately prevent the rotor current rise. A dead-beat control technique is developed to adjust the converter. In addition to the extensive computer simulation, a laboratory scale prototype is developed to validate the proposed solution. The size of the energy storage system required for the converter is also discussed in this thesis.;Future work directions are proposed including more robust control technique, minimizing number of additional parts and bigger laboratory scale prototype.
Keywords/Search Tags:Voltage, Wind, Generator, DFIG
Related items