Font Size: a A A

Synthesis, Transport, and Thermoelectric Studies of Topological Dirac Semimetal Cd3As2 for Room Temperature Waste Heat Recovery and Energy Conversio

Posted on:2018-06-25Degree:Ph.DType:Thesis
University:The University of Wisconsin - MilwaukeeCandidate:Hosseini, Tahereh AFull Text:PDF
GTID:2442390002497962Subject:Electrical engineering
Abstract/Summary:
Rising rates of the energy consumption and growing concerns over the climate change worldwide have made energy efficiency an urgent problem to address. Nowadays, almost two-thirds of the energy produced by burning fossil fuels to generate electrical power is lost in the form of the heat. On this front, increasing electrical power generation through a waste heat recovery remains one of the highly promising venues of the energy research. Thermo-electric generators (TEGs) directly convert thermal energy into electrical and are the prime candidates for application in low-grade thermal energy/ waste heat recovery. The key commercial TE materials, e.g. PbTe and Bi2Te 3, have room temperature ZT of less than 1, whereas ZT exceeding 3 is required for a TEG to be economically viable. With the thermoelectric efficiency typically within a few percent range and a low efficiency-to-cost ratio of TEGs, there has been a resurgence in the search for new class of thermo-electric materials for developing high efficiency thermo-to-electric energy conversion systems, with phonon-glass electron-crystal materials holding the most promise.;Herein, we focus on synthesis, characterization and investigation of electrical, thermo-electrical and thermal characteristics of crystalline Cd 3As2, a high performance 3D topological Dirac semimetal with Dirac fermions dispersing linearly in k3-space and possessing one of the largest electron mobilities known for crystalline materials, i.e. ~104--105cm2V--1 s--1. Suppression of carrier backscattering, ultra-high charge carrier mobility, and inherently low thermal conductivity make this semimetal a key candidate for demonstrating high, device-favorable S and in turn ZT.;In this work, a low-temperature vapor-based crystallization pathway was developed and optimized to produce free standing 2D cm-size crystals in Cd 3As2. Compared to the bulk crystals produced in previous studies, e.g. Piper-Polich, Bridgman, or flux method, Cd3As 2 samples were synthesized over a considerably shorter time ( only a few hours), were single crystals and highly stochiometric. A high thermopower of up to 613 microV K--1 and the electrical conductivity of ~105 S/m were registered within the temperature range of 300--400 K.;A 1o-method based on the transfer function was applied to probe a thermal conductivity, k of Cd3As2 platelets. The results yield k of ~2.4 W/m.K in the confirmation that the thermal conductivity of Cd3As2 crystals is to approach the amorphous limit at the room temperature.;With its peak thermopower attained at the low temperature range of ~300-400 K, high electrical conductivity and amorphous limit thermal conductivity, crystalline Cd3As2 grown via a low-T vapor based method demonstrates ZT > 3; the results confirm that as-produced Cd 3As2 platelets hold a high promise and is another phonon-glass electron-crystal TE material for the development of next generation, high efficiency thermo-electric generators and refrigerators operating under normal conditions.
Keywords/Search Tags:Energy, Waste heat recovery, Room temperature, Efficiency, Cd3as2, Semimetal, Dirac, Thermal conductivity
Related items