Font Size: a A A

Metallic photonic crystals for thermophotovoltaic applications

Posted on:2010-09-03Degree:Ph.DType:Thesis
University:Rensselaer Polytechnic InstituteCandidate:Walsh, Timothy AFull Text:PDF
GTID:2440390002971601Subject:Engineering
Abstract/Summary:
Since the idea of a photonic bandgap was proposed over two decades ago, photonic crystals have been the subject of significant interest due to their novel optical properties which enable new and varied applications. In this research, the photonic bandgap effect is exploited to tailor the thermal radiation spectrum to a narrow range of wavelengths determined by the lattice symmetry and dimensions of the photonic crystal structure. This sharp emission peak can be matched to the electronic bandgap energy of a p-n junction photovoltaic cell for high efficiency thermophotovoltaic energy conversion. This thesis explores aspects of photonic crystal design, materials considerations, and manufacture for thermophotovoltaic applications.Photonic crystal structures come in many forms, exhibiting various types of 1D, 2D, and 3D lattice symmetry. In this work, the "woodpile" 3D photonic crystal is studied. One advantage of the woodpile lattice is that it can be readily fabricated on a large scale using common integrated circuit manufacturing techniques. Additionally this structure lends itself to efficient and accurate modeling with the use of a plane-wave expansion based transfer matrix method to calculate the scattering properties and band structure of the photonic crystal. This method is used to explore the geometric design parameters of the woodpile structure. Optimal geometric proportions for the structure are found which yield the highest narrowband absorption peak possible. By Kirchoffs law of thermal emission, this strong and sharp absorptance will yield high power and narrowband thermal radiation. The photonic crystal thermal emission spectrum is then evaluated in a TPV system model to evaluate the electrical power density and system efficiency achievable. The results produced by the photonic crystal emitter are compared with the results assuming a blackbody thermal radiation spectrum. The blackbody represents a universal standard against which any selective emitter can be measured. It is found that by concentrating the thermal emission in a narrow band at the photovoltaic cell bandgap energy, the photonic crystal radiator can produce approximate 80% of the electrical power density that is possible with the blackbody while increasing the efficiency of the energy conversion by a significant amount.Photonic crystal manufacture is studied with the fabrication of a six layer copper woodpile structure. The fabrication proceeds with a layer by layer technique utilizing 8" silicon wafer substrates. Back end of the line integrated circuit manufacturing techniques are used to fabricate this interconnected multilayer structure. The completed wafers show good uniformity die to die and within a single die, demonstrating the feasibility of large scale production of woodpile photonic crystal structures. Structural and optical characterization of the fabricated woodpile are presented.The final section of this work deals with materials considerations for short wavelength high temperature photonic crystal emitters. In the mid infrared and microwave region of the electromagnetic spectrum, all metals effectively behave as ideal conductors. However at shorter wavelengths, material absorption increases and has a significant effect on the optical properties of a woodpile photonic crystal designed for operation at these wavelengths. Tungsten was explored for woodpile photonic crystal thermal emitters due to its high melting point, however the optical properties are not well suited to devices with emission peaks below &sim2 mum. Iridium is an alternate high temperature material with more ideal optical behavior in the 1--2 mum range than tungsten. It is found that by coating tungsten woodpile structures with a thin layer of iridium using atomic layer deposition, the photonic band edge can be moved below 1 mum, which was not possible in tungsten simply by scaling the feature sizes to smaller values.
Keywords/Search Tags:Photonic crystal, Thermophotovoltaic, Tungsten, Bandgap
Related items