Font Size: a A A

Database Streaming Compression on Memory-Limited Machine

Posted on:2019-06-29Degree:Ph.DType:Dissertation
University:Nova Southeastern UniversityCandidate:Bruccoleri, DamonFull Text:PDF
GTID:1478390017487559Subject:Computer Science
Abstract/Summary:
Dynamic Huffman compression algorithms operate on data-streams with a bounded symbol list. With these algorithms, the complete list of symbols must be contained in main memory or secondary storage. A horizontal format transaction database that is streaming can have a very large item list. Many nodes tax both the processing hardware primary memory size, and the processing time to dynamically maintain the tree.;This research investigated Huffman compression of a transaction-streaming database with a very large symbol list, where each item in the transaction database schema's item list is a symbol to compress. The constraint of a large symbol list is, in this research, equivalent to the constraint of a memory-limited machine. A large symbol set will result if each item in a large database item list is a symbol to compress in a database stream. In addition, database streams may have some temporal component spanning months or years. Finally, the horizontal format is the format most suited to a streaming transaction database because the transaction IDs are not known beforehand. This research prototypes an algorithm that will compresses a transaction database stream.;There are several advantages to the memory limited dynamic Huffman algorithm. Dynamic Huffman algorithms are single pass algorithms. In many instances a second pass over the data is not possible, such as with streaming databases. Previous dynamic Huffman algorithms are not memory limited, they are asymptotic to O(n), where n is the number of distinct item IDs. Memory is required to grow to fit the n items. The improvement of the new memory limited Dynamic Huffman algorithm is that it would have an O(k) asymptotic memory requirement; where k is the maximum number of nodes in the Huffman tree, k < n, and k is a user chosen constant. The new memory limited Dynamic Huffman algorithm compresses horizontally encoded transaction databases that do not contain long runs of 0's or 1's.
Keywords/Search Tags:Database, Memory, Dynamic huffman, Compression, List, Streaming
Related items