Font Size: a A A

Performance-Based Seismic Retrofit of Soft-Story Woodframe Buildings Using Energy-Dissipation System

Posted on:2015-09-20Degree:Ph.DType:Dissertation
University:Rensselaer Polytechnic InstituteCandidate:Tian, JingjingFull Text:PDF
GTID:1472390017497541Subject:Civil engineering
Abstract/Summary:
Low-rise woodframe buildings with disproportionately flexible ground stories represent a significant percentage of the building stock in seismically vulnerable communities in the Western United States. These structures have a readily identifiable structural weakness at the ground level due to an asymmetric distribution of large openings in the perimeter wall lines and to a lack of interior partition walls, resulting in a soft story condition that makes the structure highly susceptible to severe damage or collapse under design-level earthquakes. The conventional approach to retrofitting such structures is to increase the ground story stiffness. An alternate approach is to increase the energy dissipation capacity of the structure via the incorporation of supplemental energy dissipation devices (dampers), thereby relieving the energy dissipation demands on the framing system. Such a retrofit approach is consistent with a Performance-Based Seismic Retrofit (PBSR) philosophy through which multiple performance levels may be targeted. The effectiveness of such a retrofit is presented via examination of the seismic response of a full-scale four-story building that was tested on the outdoor shake table at NEES-UCSD and a full-scale three-story building that was tested using slow pseudo-dynamic hybrid testing at NEES-UB. In addition, a Direct Displacement Design (DDD) methodology was developed as an improvement over current DDD methods by considering torsion, with or without the implementation of damping devices, in an attempt to avoid the computational expense of nonlinear time-history analysis (NLTHA) and thus facilitating widespread application of PBSR in engineering practice.
Keywords/Search Tags:Seismic, Building, Retrofit, Energy, Dissipation
Related items