Font Size: a A A

Growth dynamics, charge density, and structure of polyamide thin-film composite membranes

Posted on:2015-01-11Degree:Ph.DType:Dissertation
University:University of Illinois at Urbana-ChampaignCandidate:Matthews, TamlinFull Text:PDF
GTID:1471390017993925Subject:Materials science
Abstract/Summary:
The main objectives of this dissertation are to characterize polyamide layers formed on polysulfone supports, without physical or chemical removal, so that it is close to its native form, which has been used in industrial reverse osmosis applications.;Growth dynamics by diffuse reflectance spectroscopy was developed for the polymerization of polyamide on porous polysulfone supports using varying concentrations of m-phenylenediamine (MPD) in water of 0.1-- 100 g/L with a fixed concentration of trimesoyl chloride (TMC) in hexane of 1 g/L, and varying TMC concentrations of 0.1--10 g/L with a fixed MPD concentration of 20 g/L. A relationship was developed between diffuse reflectance and polyamide thickness. The diffuse reflectance data shows that ~50% of the polyamide thickness is produced in 2 g/L. All studied concentrations of TMC at a fixed 20 g/L MPD concentration produced a polyamide thickness of ≈120 nm. Polyamide thickness increases from ≈10 to 110 nm with increasing concentration of MPD at 1 g/L TMC. The roughness measured with AFM increases with increasing MPD concentration but decreases with increasing TMC concentration. At MPD concentrations <0.5 g/L, polyamide does not grow on top of the polysulfone.;The charge density of polyamide layers arises from unpolymerized free amine and carboxylic groups contributing positive and negative charges, respectively. The negative charge groups from carboxylic acid were tagged with Ag+. Using the same concentration ranges as the growth dynamics study, the charge densities were characterized in the bulk by RBS and in the near-surface by XPS. With increasing concentration of MPD, the charge density in the near-surface region is constant and ≈0.3 M, due to constant surface contact with the carboxylic acid containing TMC monomer. The charge density decreases from 0.3 M to 0.1 M in the polyamide bulk with increasing MPD concentration. TMC showed a 30x increase in charge density from 0.02 to 0.61 g/L in the bulk polyamide between 0.1 g/L TMC and 10 g/L TMC. The near-surface charge density also increases with increasing TMC concentration.;Charge density was determined in the bulk RBS on membranes at varying pH between 3.5 and 10.5. These membranes show a good fit to a two pKa system, except the highest TMC concentration studied of 5 g/L which followed a one pKa system. Fitting the pH data using the pKa system shows that the total concentration of carboxylic acid groups decreases from 0.42 to 0.20 M with increasing MPD concentration. The decreasing carboxylic acid content is due to a higher concentration of MPD monomers. The total concentration of carboxylic acid groups increases with from 0.05 to 0.51 M with increasing TMC concentration. The concentration of TMC has a large effect on the charge density with the highest pH of 10.5 resulting in the highest measured charge density for each concentration increasing from 0.04 M to 0.55 M for 0.1 g/L to 5 g/L TMC.;Grazing incidence small- and wide-angle X-ray scattering (GISAXS and GIWAXS) were successfully used to study the supported polysulfone ultrafiltration membrane and polyamide on polysulfone reverse osmosis membrane. Linear regions in GISAXS of I(Q) alpha Q-3.7 for polysulfone and Q -3.6 for polyamide on polysulfone were observed, which correspond to the Porod regime for smooth internal polymer interface sizes between 392.7 nm < d < 523.6 nm. The size of the interface is larger for higher incidence angles, which penetrate deeper into the porous structure of polysulfone. (Abstract shortened by UMI.).
Keywords/Search Tags:Polyamide, Charge density, Polysulfone, TMC, Increasing MPD concentration, Growth dynamics, Carboxylic acid
Related items