Font Size: a A A

Mechanism study of skin tissue ablation by nanosecond laser pulses

Posted on:2003-08-31Degree:Ph.DType:Dissertation
University:East Carolina UniversityCandidate:Fang, QiyinFull Text:PDF
GTID:1468390011989660Subject:Biophysics
Abstract/Summary:
Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery.; Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported.; The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed. A laser-induced and localized thermal ionization pathway has been investigated and it was found to have significant influence on the initial free electron density during plasma formation due to the combination of strong light absorption by chromophores and confined temperature rise in the chromophores. Good agreements have been found between the new plasma-mediated ablation model and experimental results. The implications of this dissertation research to the future improvement of laser systems in dermatology and plastic surgery are discussed.
Keywords/Search Tags:Ablation, Laser pulses, Dermatology and plastic surgery
Related items