Font Size: a A A

Structural and lithologic constraints to mineralization in Aurora, Nevada and Bodie, California mining districts, observed with aerospace geophysical data

Posted on:2003-10-19Degree:Ph.DType:Dissertation
University:University of Nevada, RenoCandidate:Smailbegovic, AmerFull Text:PDF
GTID:1468390011983419Subject:Geophysics
Abstract/Summary:
This study used a multifaceted approach to investigate the geology and metallogenesis of the Bodie Hills region and the Aurora mining district. The factors influencing regional- and local-scale metallogenesis are compared and discussed in context of the various datasets, analysis techniques and methodologies. The Aurora and Bodie mining districts are located in the Miocene volcanics of the Bodie Hills, north of Mono Lake, on the opposite sides of the Nevada-California state line. From the standpoint of economic geology, both deposits are structurally controlled, low-sulfidation, quartz-adularia-sericite precious metal vein deposits with an extensive alteration halo. The area has been exploited since late 1870s by both underground and minor open pit operations (Aurora), exposing portions of altered andesites, rhyolite flows and tuffs and quartz-adularia-sericite veins. Much of the previous geologic mapping and explanation in Aurora was ad-hoc and primarily in support of the mining operations, without particular interest paid to the system as a whole. Using detailed field mapping and interpretation of the deposit in Bodie as a guide, a combined array of geophysical data in conjunction with traditional field mapping and GIS-based Weights of Evidence (WofE) modeling was utilized to attain better understanding of the Aurora district and both districts in the local and regional framework. The gravity data suggests a NE-trending, positive anomaly, resulting from a density contrast between the presumably uplifted pre-Tertiary basement and Miocene volcanic assemblage in the Bodie Hills. The aeromagnetic data are dominated by the strong signature of the Miocene volcanism (vents, flows, etc.) and suggests that the volcanic activity is concentrated along the northeasterly corridor of basement uplift. Multispectral, spaceborne imagery (Landsat ETM, ASTER) shows the regional structural setting, which is dominated by NNE and NE-trending lineaments and major alteration trends in the Bodie Hills. The high-resolution, narrow-swath, hyperspectral data obtained from high and low altitude AVIRIS targeted on the individual districts, allows identification of hydrothermal alteration assemblages, potential structural mineralization conduits and surface manifestations of mineralization. Individual segments of the regional-to-local geophysical survey are field checked and spatially integrated using WofE. The interpretation and WofE modeling of the geophysical data and detailed geologic field mapping reveal a close relationship between the basement uplift (source for metals), NE-trending structures (conduits), volcanic activity (energy), hydrothermal activity (genesis) and mineralization in Aurora and Bodie. This study confirms that Aurora represents a low-sulfidation system hosted in a strike-slip influenced dilational vein system, which may be genetically associated with the initial phase of Miocene extension and stress accommodation in Western Great Basin during 15–8 Ma.
Keywords/Search Tags:Aurora, Bodie, Data, Mining, Mineralization, Districts, Geophysical, Structural
Related items