Font Size: a A A

An economic optimization of pressurized light water reactor cores

Posted on:1998-10-19Degree:Ph.DType:Dissertation
University:Georgia Institute of TechnologyCandidate:Pfeifer, HolgerFull Text:PDF
GTID:1462390014478081Subject:Engineering
Abstract/Summary:
Two reactor cores (1000 MWe and 600 MWe) are optimized with respect to power cost. The power cost is minimized while retaining the thermal-hydraulic margins of the reference core. Constant thermal-hydraulic margins result in similar accident thermal-hydraulic transient behavior of the cores developed during the optimization study. The cost components impacted by the optimization are once-through fuel cycle, capital, and administrative/manpower costs. The variables in the optimization are pin diameter, moderator to fuel (H/U) ratio, core length, and the number of fuel pins in the core. A sequential quadratic programming approach is employed to solve the nonlinear optimization problem with constraints. The fuel cycle costs are evaluated by the use of the linear reactivity model, and capital costs are adjusted by suitable modifications to the nuclear energy cost database reference costs. The results of the analysis shows that for fixed assembly parameters (i.e., pin diameter, H/U ratio, and core length), the optimum core is one that operates at the thermal-hydraulic limits. Cores optimized with unconstrained assembly characteristics contain a larger number of smaller pins at a higher H/U ratio. This follows the trend in current reactor designs. While the lifetime power cost savings for the optimized core are less than 4 million dollars (versus a present day total cost of 6.9 billion dollars), the optimization analysis shows that higher thermal-hydraulic margins can be attained with minimum power cost increases. With increased emphasis on reactor safety, significantly higher safety margins may therefore be achieved without a significant power cost increase. The optimized configurations were found to be relatively insensitive to fuel cycle cost component variations.
Keywords/Search Tags:Power cost, Core, Reactor, Optimization, Optimized, Fuel cycle
Related items