Font Size: a A A

Modeling and space vector control of a novel multilevel matrix converter for variable-speed wind power generators

Posted on:2002-02-03Degree:Ph.DType:Dissertation
University:University of Colorado at BoulderCandidate:Al-Naseem, Osama AbdulrahmanFull Text:PDF
GTID:1462390011990478Subject:Engineering
Abstract/Summary:
A novel multilevel matrix converter is developed to efficiently transfer energy between a three-phase variable-speed generator of a wind turbine and a three-phase ac utility network. Optimizing the energy transfer efficiency at light load is critical in variable-speed wind generators. Laboratory experiment suggests that converter efficiency at light load may be increased via soft-switching and multilevel switching techniques. The new converter includes the advantages of multilevel converters, such as reduced harmonic content, increased power handling capability without additional switching loss, and high efficiency at low machine voltages. It also features the characteristics of conventional matrix converters, such as space vector control and improved efficiency via auxiliary resonant commutation soft-switching techniques.; Similar to a conventional matrix converter, the novel multilevel matrix converter uses a nine-switch matrix with four-quadrant switches to connect input phases at one side of the converter with output phases at the other side of the converter. However, the switches of the new converter are configured differently from those used in the conventional matrix converter. Each switch of the new converter is a cell that resembles a full-bridge inverter topology and can assume three voltage levels while used. Semiconductor devices in a switch cell are always clamped to a known constant do voltage of a capacitor. This is a typical characteristic of multilevel converters where device voltage stresses are reduced by clamping the main transistor voltages to low levels. With reduced voltage stresses, switching frequency can be increased to allow for reduced size of filter magnetics. Unlike conventional matrix converter, the multilevel matrix converter uses inductors on both input and output sides of the converter. This symmetry allows for both step up and step down operations.; Each switch cell features double the power handling capability compared to the four-quadrant switches used in a conventional matrix converter. This increase in power handling capability is due to the doubling of the number of devices in a multilevel matrix converter switch cell. Scaling up the power handling capability is accomplished by cascading more than one switch cell per branch.; Control of the new converter is achieved through space vector modulation in which three-phase ac voltages are transformed to the d-q reference frame and compared with a set of space vectors prior to modulation. Since it has 19683 different switching combinations, control can be difficult and complex. Nevertheless, the multilevel matrix converter has been modeled and controlled through simulation. Simulation results show the possibility of operating the converter to produce the desired voltage waveforms with universal input and output power factors and maintain constant capacitor voltages simultaneously.; Also in this dissertation is the derivation of an analytical averaged equivalent circuit model of a PWM converter. This model reveals how dominant loss mechanisms vary with converter operating point. The model is based on the operational characteristics of power diodes and IGBTs. Laboratory experiments support the derived model and confirm that IGBT current tailing and diode reverse-recovery are indeed the most critical losses in a PWM converter. These losses are more significant at light load, hence reducing the energy capture capability of converters used in wind generation. The results suggest that multilevel conversion, which has been employed in the novel multilevel matrix converter, could improve the low-wind converter efficiency.
Keywords/Search Tags:Converter, Energy, Space vector control, Variable-speed, Power handling capability, Switch cell
Related items