Font Size: a A A

Embedded damage sensor using triboluminescence as a transduction mechanism for detecting failure of a material under load

Posted on:2004-07-31Degree:Ph.DType:Dissertation
University:The Johns Hopkins UniversityCandidate:Lesho, Jeffery CarlFull Text:PDF
GTID:1462390011475987Subject:Engineering
Abstract/Summary:
Damage sensors are devices that monitor the state of health of structures or materials and that provide a signal indication when external forces or other conditions have caused the structure to fail. Continuous monitoring of structures is vital for safety reasons as well as for reduction of maintenance costs. The present study investigated the use of triboluminescent materials as a transduction mechanism for the detection of failure, combined with development of an electronic system to telemeter the optical pulses to a remote receiver for analysis and classification. The goal of the latter work was to create a low cost system that was small enough to be implanted into a smart material with a useful life of one year.; The investigation had four main parts. First a search for an intense triboluminescent radiative material was undertaken. When an appropriate material was identified, a new improved method was developed that yielded a more efficient approach to processing. Research into the mechanism for the chosen material was conducted to determine if a new material could be engineered to yield larger signals. Second, a very low power opto-electronics system was developed that included an electronic circuit designed to monitor the sensor, and when a triboluminescent optical pulse is detected, it activates a transmitter that telemeters the optical decay signal to an external receiver. The receiver captures the optical decay as sampled digital data and correlates the signal with the known optical decay of the triboluminescent radiation. Third, a ‘smart material’ was fabricated with the triboluminescent sensor embedded in a block of epoxy. This material was tested to failure and the failure event was captured and the data was classified. Lastly, a correlation procedure for classifying the optical decays was written to actively look for failure events and filter out noise. Positive correlation results indicate that fracture has actually occurred.
Keywords/Search Tags:Material, Failure, Sensor, Mechanism
Related items