Font Size: a A A

The development of a biological interface for transition metal implants

Posted on:1999-07-17Degree:Ph.DType:Dissertation
University:The University of North Carolina at Chapel HillCandidate:Melton, Kim RFull Text:PDF
GTID:1461390014972139Subject:Engineering
Abstract/Summary:PDF Full Text Request
The specific goal of this research was to develop an in vitro model for a root-form endosseous dental implant that contains a periodontal ligament and that is biologically integratable into alveolar bone. This objective was based on the following two hypotheses. (1) The chemical attachment of extracellular matrix proteins to the surface of transition metals increases the number of fibroblast cells attached to the surface of the metal. (2) The chemical attachment of extracellular matrix proteins to the surface of transition metals increases the strength of the fibroblast cell attachment to the surface of the metal.; The model needed to have a well-controlled surface that was reproducible. Thus, a layer of Au was deposited over a Ti base, and dithiobis(succinimidylpropionate) (DSP) a chemical containing disulfide groups was adsorbed to the Au. Next, extracellular matrix proteins which are periodontal ligament components were attached to the free end group of the chemical that was adsorbed to the Au. This surface served as an attachment substrate on which additional periodontal ligament components such as fibroblast cells could grow. From this model a new implant interface may be developed.; This model was tested using the following polypeptides; collagen type I, collagen type IV, fibronectin, and poly-D-lysine. L929 cells were grown on Ti, Ti + Au, Ti + Au + polypeptide, and Ti + Au + DSP + polypeptide. After 72 hours, the live cells were stained with neutral red. The substrates were then subjected to increasing centrifugal forces. The viable stained cells were fixed onto the substrates and cells were counted.; The hypotheses were proven for three polypeptides: fibronectin, collagen type I, and poly-D-lysine. The strongest attachment was found with collagen type I. Collagen type IV did not provide any advantage for attachment over uncoated transition metals.
Keywords/Search Tags:Transition, Collagen type, Metal, Attachment, Extracellular matrix proteins, Model
PDF Full Text Request
Related items