| The objective of this study is to investigate the effects of the co-dopants of KCl and Ga2S3 and post-deposition annealing on the microstructure and electroluminescence (EL) properties of ZnS:Mn thin film phosphors. ZnS:Mn thin films are deposited by radio frequency (RF) magnetron sputtering from ZnS and Mn targets onto pre-deposited indium tin oxide (ITO) and aluminum titanium oxide (ATO) layers on Corning 7059 glass. Argon at 20mTorr is the sputtering ambient. The substrates are held at 180°C during deposition. Co-dopants are thermally evaporated after the ZnS:Mn films, and diffused into the ZnS:Mn films by ex situ annealing between 600°C and 800°C for 5 minutes in a nitrogen ambient. Brightness versus the applied voltage, luminous efficiency, and photoluminescence (PL) are used to characterize the EL devices. The figures of merit are the threshold voltage Vth, at which luminescence is first detected, B40 and η40, the brightness and efficiency at 40V above the threshold voltage, respectively.; In the as-deposited ZnS:Mn phosphor, the microstructure is heavily defected with two different grain morphologies: a roughly 100nm layer of equiaxed fine grains at the insulator/phosphor interface and columnar grains with an average diameter of 89nm in the rest of the film. The EL properties of as-deposited films are poor, with a Vth of 125V, B40 of 48.7nits, and a η40 of 0.2275lm/W. Annealing at 700°C for 5 minutes raises B40 to 99.6nits and η40 to 0.4463lm/W, with little change in Vth.; In KCl doped ZnS:Mn samples, after 5 minutes of annealing at 700°C, SIMS indicates a uniform distribution of K and a complete diffusion of Cl throughout the phosphor. KCl co-doping enhances grain growth by improving dislocation motion, and the columnar grain size increases from 132nm to 187nm. EL properties are improved, with a B40 of 252nits and η 40 of 0.9879lm/W. A slight increase in Vth is observed.; In ZnS:Mn samples with Ga2S3, the grain growth is less than that in undoped ZnS:Mn. Energy dispersive spectrometry (EDS) data show Ga segregation to grain boundaries and triple points. Decreases of 40V in Vth and 10nits in B40 are observed from ZnS:Mn,Ga 2S3 samples annealed at 800°C. It is postulated that Ga2S3 creates a range of shallow donor states at the interface close to the conduction band, which causes lower threshold voltages and “leaky” turn-on properties. The low EL brightness is attributed to the low threshold voltage. The lack of reduction of the defects in the microstructure of ZnS:Mn,Ga2S3 during anneal is another reason for the poor EL properties.; When samples are doped with Ga2S3 first followed by KCl, much better EL properties are observed than from samples doped with KCl first followed by Ga2S3 (B40 of 120nits versus 64.2nits). (Abstract shortened by UMI.)... |