Font Size: a A A

Calcium phosphate sol-gel-derived coatings on titanium-aluminum-vanadium substrate for biomedical applications

Posted on:2004-08-31Degree:Ph.DType:Dissertation
University:University of Toronto (Canada)Candidate:Gan, LuFull Text:PDF
GTID:1461390011475312Subject:Engineering
Abstract/Summary:
Osseointegration of implants to host bone is a necessary requirement for dental and orthopaedic implants. The rate and quality of osseointegration were enhanced through the use of calcium phosphate (Ca-P) films on metallic substrates. The present study investigates the characteristics of Ca-P films applied using sol-gel dip coating methods to sintered porous-surfaced implants. Ca-P films have been formed using Inorganic Route and Organic Route processes. It has been shown that both approaches resulted in the formation of carbonated hydroxyapatite but with different Ca/P ratios as well as different surface textures and film structures, the Inorganic Route-formed film being more porous at its outermost surface, and having a more irregular topography. An interfacial reaction product (calcium titanium oxide) was detected for the Inorganic Route-formed coatings while this interfacial phase was not detectable in the Organic Route-formed coatings.; The interface tensile and shear adhesion strength properties of Ca-P films have been evaluated using an improved direct pull-off testing (ASTM C633) and a substrate straining method, respectively. For both Ca-P films, the adhesive tensile strength was higher than the failure stress of ∼38 MPa occurring between the Ca-P films and the glue or in the glue. A shear lag approach revealed a shear strength of 347 ± 64MPa and 280 ± 28MPa for the Inorganic Route and the Organic Route Ca-P films, respectively.; In vivo animal model studies have been performed to compare the effect on early bone formation of sintered porous-surfaced implants that had been modified through the addition of Ca-P film. In Group I study (i.e. Inorganic Route-formed Ca-P-coated implants vs. non-coated implants), it has been found that the Inorganic Route-formed Ca-P film significantly enhances the early rate of bone ingrowth for sintered porous-surfaced implants. However, in Group II study (i.e. Organic Route-formed Ca-P-coated implants vs. non-coated implants), significant improvement was not observed for the Organic Route-formed Ca-P film. It is speculated that the slightly different surface topography and film density between the two Ca-P films result in a different amounts of protein adsorption on the implant surface at the early stage, which further affects the following processes leading to osseointegration.
Keywords/Search Tags:Implants, Ca-p films, Inorganic route-formed, Coatings, Calcium
Related items