Font Size: a A A

Precise measurement of the positive muon anomalous magnetic moment

Posted on:2003-07-31Degree:Ph.DType:Dissertation
University:Yale UniversityCandidate:Deng, HuaizhangFull Text:PDF
GTID:1460390011989441Subject:Physics
Abstract/Summary:
A precise measurement of the anomalous magnetic moment, am = (g - 2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron. Highly polarized m+ of 3.09 GeV/c from a secondary beam line are injected through a superconducting inflector into a storage ring 14.2 m in diameter. The superferric storage ring has a homogeneous magnetic field of 1.45 T, which is measured by an NMR (nuclear magnetic resonance) system relative to the free proton NMR angular frequency wp . The muon spin precesses faster than its momentum rotates by an angular frequency wa in the magnetic field. The frequency wa is determined by measuring the decay positrons from the stored muons. The value of the muon anomalous magnetic moment is obtained by am =wae mmcB , 1 where ⟨B⟩ is the magnetic field weighted over the union distribution in space and time, e and mm are the charge and the the mass of the union, and c is the speed of light in vacuum.;During the data-taking period in 1999, the number of collected positrons increased by a factor of 20 compared to the previous data-taking period in 1998. The result from the data taken in 1999, am+=11659 202146 x10-101.3 ppm, 2 is in good agreement with previous measurements and reduces the combined error by a factor of about 3. The difference between the weighted mean of all experimental results, am (exp) = 11 659 203(15) x 10-10, and the theoretical value from the standard model, am (SM) = 11 659 176.6(6.7) x 10-10, is amexp -amSM =2616x10-10 . 3 The error is the addition in quadrature of experimental and theoretical uncertainties. The difference is 1.6 times the stated error.
Keywords/Search Tags:Magnetic, Muon
Related items