Font Size: a A A

Gauge and averaging in gravitational self-force

Posted on:2012-08-10Degree:Ph.DType:Dissertation
University:The University of ChicagoCandidate:Gralla, Samuel ElliotFull Text:PDF
GTID:1460390011959690Subject:Physics
Abstract/Summary:
A difficulty with previous treatments of the gravitational self-force is that an explicit formula for the force is available only in a particular gauge (Lorenz gauge), where the force in other gauges must be found through a transformation law once the Lorenz gauge force is known. For a class of gauges satisfying a "parity condition" ensuring that the Hamiltonian center of mass of the particle is well-defined, I show that the gravitational self-force is always given by the angle-average of the bare gravitational force. To derive this result I replace the computational strategy of previous work with a new approach, wherein the form of the force is first fixed up to a gauge-invariant piece by simple manipulations, and then that piece is determined by working in a gauge designed specifically to simplify the computation. This offers significant computational savings over the Lorenz gauge, since the Hadamard expansion is avoided entirely and the metric perturbation takes a very simple form. I also show that the rest mass of the particle does not evolve due to first-order self-force effects. Finally, I consider the "mode sum regularization" scheme for computing the self-force in black hole background spacetimes, and use the angle-average form of the force to show that the same mode-by-mode subtraction may be performed in all parity-regular gauges. It appears plausible that suitably modified versions of the Regge-Wheeler and radiation gauges (convenient to Schwarzschild and Kerr, respectively) are in this class.
Keywords/Search Tags:Gauge, Force, Gravitational
Related items