| The Bose-Einstein condensation of dilute atomic gases is studied. The focus is on the interesting properties and the dynamical behavior of Bose-Einstein condensates (BECs1) under various external manipulations. We investigate how the interaction affects the interference pattern between two BEC clouds, and show how the interference pattern can be calculated. We then present a theory on the generation of dark solitons in BECs with a new experimental technique called phase imprint. By mapping this problem into a classic pendulum problem, we show how to design the phase step imprinted on a BEC cloud to generate desired dark solitons. We finally study the system of a BEC in an optical lattice, a nonlinear periodic system, which exhibits interesting new effects on the tunneling and superfluidity in terms of its Bloch bands and Bloch waves.;1In the dissertation, BEC stands for Bose-Einstein condensate, not Bose-Einstein condensation. |