Font Size: a A A

Characterization of ultra wideband communication channels

Posted on:2004-12-31Degree:Ph.DType:Dissertation
University:Virginia Polytechnic Institute and State UniversityCandidate:Muqaibel, Ali HusseinFull Text:PDF
GTID:1458390011455731Subject:Engineering
Abstract/Summary:
Ultra-wideband (UWB) communication has been the subject of extensive research in recent years due to its unique capabilities and potential applications, particularly in short-range multiple access wireless communications. The objective of this dissertation is to obtain a more thorough and comprehensive understanding of the potentials of UWB technology by characterizing the UWB communication channels. Channel characterization refers to extracting the channel parameters from measured data. The extracted parameters are used to quantify the effect of the channel on communication UWB systems using this channel as signal transmission medium. Data are measured in different ways using a variety of time-domain and frequency-domain techniques. The experimental setups used in channel characterization effort also include pulse generators and antennas as integral parts of the channel, since the pulse shape and antenna characteristics have significant impact on channel parameters.; At a fundamental level, the propagation of UWB signals, as any electromagnetic wave, is governed, among other things, by the properties of materials in the propagation medium. One of the objectives of this research is to examine propagation through walls made of typical building materials and thereby acquire ultra-wideband characterization of these materials. The loss and the dielectric constant of each material are measured over a frequency range of 1 to 15 GHz. Ten commonly used building materials are chosen for this investigation. These include, dry wall, wallboard, structure wood, glass sheet, bricks, concrete blocks, reinforced concrete (as pillar), cloth office partition, wooden door, and styrofoam slab. The work on ultra-wideband characterization of building materials resulted in an additional interesting contribution. A new formulation for evaluating the complex dielectric constant of low-loss materials, which involves solving real equations and thus requiring only one-dimensional root searching techniques, was found. The results derived from the exact complex equation and from the new formulation are in excellent agreement.; Following the characterization of building materials, an indoor UWB measurement campaign is undertaken. Typical indoor scenarios, including line-of-sight (LOS), non-line-of-sight (NLOS), room-to-room, within-the-room, and hallways, are considered. Results for indoor propagation measurements are presented for local power delay profiles (local-PDP) and small-scale averaged power delay profiles (SSA-PDP). Site-specific trends and general observations are discussed. (Abstract shortened by UMI.)...
Keywords/Search Tags:UWB, Communication, Channel, Characterization, Building materials
Related items