Font Size: a A A

High power external cavity laser diode arrays for the generation of hyperpolarized noble gases

Posted on:2005-05-26Degree:Ph.DType:Dissertation
University:Boston UniversityCandidate:Blasche, Gregory PaulFull Text:PDF
GTID:1458390008998170Subject:Physics
Abstract/Summary:
Hyperpolarized noble gas magnetic resonance imaging promises to be a useful medical diagnostic tool due to its ability to image airways and brain function. A current limitation to widespread use is the time needed to generate gas quantities large enough for clinical patient imaging. Here I investigate line-narrowing of laser diode arrays in order to optimize the generation of hyperpolarized noble gases.; Hyperpolarized noble gases are nuclear spin-½ isotopes that are polarized externally to have a large excess population of metastable spin up nuclei. When inhaled and imaged, they provide a novel tool for scientific studies and medical diagnosis in the human body. The gases are generated through a spin-exchange process via the spin-conserving hyperfine interaction of noble gas nuclei and optically pumped alkali metals. The net amount of polarized gas is limited by the optical power which is absorbed by the alkali metals as this is the first stage in the spin-exchange process. Laser diode arrays are typically used because they have a high available power for relatively low cost. Unfortunately, they are optically inefficient due to the factor of twenty larger inherent linewidth relative to the pressure broadened absorption linewidth of the alkali metal.; In order to increase the efficiency of the system, I have designed and built an external cavity around the laser diode array consisting of a diffraction grating which acts as a wavelength dependent mirror tuned to the alkali metal rubidium absorption frequency. This causes the laser to operate solely at the desired wavelength, reducing the linewidth. External cavities have long been used for single element laser diodes. I extend this technique to laser diode arrays by imaging the diodes onto the grating using a set of imaging lenses forming individual cavities. I discuss the limitations on the power and linewidth achievable due to the optics of the cavity, as well as limitations caused by non-uniform heating effects.; Finally, I present measurements of the nuclear polarization and absorption for Helium using our line-narrowed laser system and will compare and contrast the benefits of the line-narrowed system over the fiber-coupled laser diode arrays currently being used.
Keywords/Search Tags:Laser diode arrays, Hyperpolarized noble, Gas, Power, Cavity, External, Imaging
Related items