Font Size: a A A

Detection of toxic industrial chemicals and bacterial endotoxins via electrical and optical spectroscopy techniques

Posted on:2013-08-26Degree:Ph.DType:Dissertation
University:University of Massachusetts LowellCandidate:Ammu, SrikanthFull Text:PDF
GTID:1458390008983163Subject:Health Sciences
Abstract/Summary:
The first decade of the 21st century has been labeled by some as the "Sensor Decade." With a dramatic increase in sensor R&D and applications over the past 20 years, sensors are certainly on the brink of a revolution similar to what was in the field of computers in 1980s, information technology in the 1990s and wireless communication at the turn of the century. Just in the pharmaceutical industry alone, sensing needs are growing by leaps and bounds, and the sensing technologies used are as varied as the applications. Tremendous advances have been made in sensor technology and many more are on the brink of commercialization.;In this work, I have attempted to balance breadth and depth in a single, practical and up-to-date resource. Understanding sensor design and operation typically requires a cross-disciplinary background, as it draws basic concepts from both engineering (chemical, electrical, mechanical, etc.), and science (mathematics, physics, chemistry, biology, etc.). This work is an attempt to pull together the most crucial information utilized in designing, fabricating and application of this relatively novice field of Nanomaterials.;While it would be impossible to cover each and every sensor in use today, I have attempted to provide as broad a range of sensor types and applications as possible. Current industrial standards, latest techniques for fabrication and assembly, followed by their application in safeguarding the human race against from possible chemical and biological threats are discussed in detail.
Keywords/Search Tags:Sensor
Related items