Font Size: a A A

High-Sensitivity Temperature-Independent Silicon Photonic Microfluidic Biosensors

Posted on:2013-12-14Degree:Ph.DType:Dissertation
University:Lehigh UniversityCandidate:Kim, KangbaekFull Text:PDF
GTID:1458390008977985Subject:Physics
Abstract/Summary:
Optical biosensors that can precisely quantify the presence of specific molecular species in real time without the need for labeling have seen increased use in the drug discovery industry and molecular biology in general. Of the many possible optical biosensors, the TM mode Si biosensor is shown to be very attractive in the sensing application because of large field amplitude on the surface and cost effective CMOS VLSI fabrication.;Noise is the most fundamental factor that limits the performance of sensors in development of high-sensitivity biosensors, and noise reduction techniques require precise studies and analysis. One such example stems from thermal fluctuations. Generally SOI biosensors are vulnerable to ambient temperature fluctuations because of large thermo-optic coefficient of silicon (∼2x10 -4 RIU/K), typically requiring another reference ring and readout sequence to compensate temperature induced noise. To address this problem, we designed sensors with a novel TM-mode shallow-ridge waveguide that provides both large surface amplitude for bulk and surface sensing. With proper design, this also provides large optical confinement in the aqueous cladding that renders the device athermal using the negative thermo-optic coefficient of water (~ --1x10-4RIU/K), demonstrating cancellation of thermo-optic effects for aqueous solution operation near 300K.;Additional limitations resulting from mechanical actuator fluctuations, stability of tunable lasers, and large 1/f noise of lasers and sensor electronics can limit biosensor performance. Here we also present a simple harmonic feedback readout technique that obviates the need for spectrometers and tunable lasers. This feedback technique reduces the impact of 1/f noise to enable high-sensitivity, and a DSP lock-in with 256 kHz sampling rate can provide down to micros time scale monitoring for fast transitions in biomolecular concentration with potential for small volume and low cost.;In this dissertation, a novel high-sensitivity, athermal biosensor on a TM-mode SOI resonator was designed, fabricated, and evaluated. High-performance biosensing for bulk and surface detection limits of 1x10-7 RIU and 24 fg/mm2 was demonstrated.
Keywords/Search Tags:Biosensors, High-sensitivity, Surface
Related items