Font Size: a A A

Interfacial fields in organic field-effect transistors and sensors

Posted on:2014-05-09Degree:Ph.DType:Dissertation
University:The Johns Hopkins UniversityCandidate:Dawidczyk, Thomas JFull Text:PDF
GTID:1458390008454123Subject:Engineering
Abstract/Summary:
Organic electronics are currently being commercialized and present a viable alternative to conventional electronics. These organic materials offer the ability to chemically manipulate the molecule, allowing for more facile mass processing techniques, which in turn reduces the cost. One application where organic semiconductors (OSCs) are being investigated is sensors. This work evaluates an assortment of n- and p-channel semiconductors as organic field-effect transistor (OFET) sensors. The sensor responses to dinitrotoluene (DNT) vapor and solid along with trinitrotoluene (TNT) solid were studied. Different semiconductor materials give different magnitude and direction of electrical current response upon exposure to DNT. Additional OFET parameters---mobility and threshold voltage---further refine the response to the DNT with each OFET sensor requiring a certain gate voltage for an optimized response to the vapor. The pattern of responses has sufficient diversity to distinguish DNT from other vapors.;To effectively use these OFET sensors in a circuit, the threshold voltage needs to be tuned for each transistor to increase the efficiency of the circuit and maximize the sensor response. The threshold voltage can be altered by embedding charges into the dielectric layer of the OFET. To study the quantity and energy of charges needed to alter the threshold voltage, charge carriers were injected into polystyrene (PS) and investigated with scanning Kelvin probe microscopy (SKPM) and thermally stimulated discharge current (TSDC). Lateral heterojunctions of pentacene/PS were scanned using SKPM, effectively observing polarization along a side view of a lateral nonvolatile organic field-effect transistor dielectric interface. TSDC was used to observe charge migration out of PS films and to estimate the trap energy level inside the PS, using the initial rise method.;The process was further refined to create lateral heterojunctions that were actual working OFETs, consisting of a PS or poly (3-trifluoro)styrene (F-PS) gate dielectric and a pentacene OSC. The charge storage inside the dielectric was visualized with SKPM, correlated to a threshold voltage shift in the transistor operation, and related to bias stress as well. The SKPM method allows the dielectric/OSC interface of the OFET to be visualized without any alteration of the OFET. Furthermore, this technique allows for the observation of charge distribution between the two dielectric interfaces, PS and F-PS. The SKPM is used to visualize the charge from conventional gate biasing and also as a result of embedding charges deliberately into the dielectric to shift the threshold voltage. Conventional gate biasing shows considerable residual charge in the PS dielectric, which results in gate bias stress.;Gate bias stress is one of the major hurdles left in the commercialization of OFETs. To prevent this bias stress, additives of different energy levels were inserted into the dielectric to limit the gate bias stress. Additionally, the dielectrics were pre-charged to try and prevent further bias stress. Neither pre-charging the dielectric or the addition of additive has been used in gate bias prevention, but both methods offer improved resistance to gate bias stress, and help to further refine the dielectric design.
Keywords/Search Tags:Bias stress, Organic, Dielectric, OFET, Transistor, Threshold voltage, SKPM, Sensor
Related items