Font Size: a A A

Characterization and modeling of 1.3 mum InAs quantum-dot lasers

Posted on:2007-07-19Degree:Ph.DType:Dissertation
University:University of WyomingCandidate:Dikshit, Amit AFull Text:PDF
GTID:1458390005486906Subject:Engineering
Abstract/Summary:
Quantum-dot (QD) lasers have the potential to offer superior characteristics compared to currently used QW lasers in optical fiber communications. In this work we have performed modeling and characterization of QD lasers with an aim to understand the physics in order to design better lasers in the future. A comprehensive analytical model is built which explains the observed temperature sensitivity of threshold current in QD lasers. The model shows that the ratio of excitons and free carriers is important to accurately model the carrier distribution and hence temperature performance of QD lasers. To understand the recombination mechanisms in QD lasers, carrier lifetime measurements were performed along with advanced numerical rate equation modeling. The carrier lifetime measurements were performed using the small-signal optical response and impedance technique. The rate equation models were then used to extract the recombination coefficients in QD lasers which represent the strength of various recombination mechanisms. Using these measurements and the rate equation models it is shown that Auger recombination is the dominant contribution to current and comprises approximately 80% of current at threshold. Further, we investigated the origin of the low injection efficiencies observed in QD lasers using a rate equation model that included the effect of inhomogeneous broadening. It is shown that the observed low injection efficiencies are likely a consequence of the cavity length vs. slope efficiency measurement technique, and therefore do not represent the intrinsic or true injection efficiencies in QD lasers. The limitation of this commonly used technique arises from the carrier occupation of non-lasing states in the inhomogeneously broadened QD ensemble.
Keywords/Search Tags:Lasers, Model, Used, Rate equation, Carrier
Related items