Font Size: a A A

Properties, Simulation, and Applications of Inter-Vehicle Communication Systems

Posted on:2014-04-19Degree:Ph.DType:Dissertation
University:University of California, IrvineCandidate:Yang, HaoFull Text:PDF
GTID:1458390005482858Subject:Engineering
Abstract/Summary:
The growth of urban vehicle traffic generates serious transportation and environmental problems in most countries of the world. Intelligent transportation systems (ITS) are effective means to solve basic traffic problems, such as driving safety, road congestion, disaster supplies, emissions, etc. Inter-vehicle communication (IVC) system is one of the most important components of ITS. In recent years, the rapid development of information technologies leads a revolution in IVC, enabling IVC be a powerful multifunctional system. However, there exist numerous challenges for ITS studies. This dissertation is aimed to address three urgent and critical issues in IVC: efficiency of information exchanging among connected vehicles, simulation methods, and IVC applications.;Information transmission efficiency, which can be measured by communication throughput or capacity, is a fundamental property of vehicular ad hoc networks. This dissertation theoretically analyzes communication throughputs, including broadcast and unicast communications, under discrete and continuous vehicular ad hoc networks (VANETs). We also examine influence of transmission range, interference ratio, market penetration rate of IVC-equipped vehicles, percentage of senders, and traffic waves on throughputs. Furthermore, we derive a theoretical formulation to calculate communication capacities under uniform traffic streams. And, an integer programming (IP) model is improved to explore capacities in general traffic, and a genetic algorithm is constructed to search the solutions efficiently.;The second contribution of this dissertation is the development of a hybrid traffic simulation model to evaluate transportation systems incorporated with IVC technologies. As IVC-equipped vehicles are able to obtain more road information and they are controlled to pursue some objectives, they will behave differently from others, and transportation systems will become heterogeneous. This dissertation presents a hybrid traffic simulation model coupling microscopic and macroscopic models to address heterogeneity in transportation systems. In the model, equipped vehicles are regulated by a car-following model, while the other vehicles are described as continuous media with the Lighthill-Whitham-Richard (LWR) model. We analytically study the model on a single-lane road using a modified Godunov method. The hybrid model shows its potential of accurate wave propagation from individual vehicles to continuous traffic streams, and reversely; i.e., the model is capable of analyzing heterogeneous traffic. Moreover, consistency, stability and convergence of the hybrid model are carefully investigated. The model also shows the advancement of computational efficiency and control flexibility on traffic simulations.;Finally, for IVC applications in environment, we propose a green driving strategy to smooth traffic flow and lower pollutant emissions and fuel consumption. In this dissertation, we study constant and dynamic green driving strategies based on inter-vehicle communications. Generally, speed limit control in successful strategies guarantee a vehicle's speed profile be smooth while still following its leader during a relative long time period. A theoretical analysis of constant strategies demonstrates that optimal smoothing effects can be achieved when a speed limit is set to be close to but not smaller than average speed of traffic. We consider a dynamic strategy in which controlled vehicles share location and speed information based on a feedback control system. The influence of market penetration rate of equipped vehicles and communication delay on the strategy is also analyzed. Besides the development of the green driving strategy, we construct a green driving APP for smartphones on the Google Android platform and design a field experiment to check the feasibility of the strategy. The results are promising and support the advancements of IVC on reducing emissions and fuel consumption.
Keywords/Search Tags:IVC, Traffic, Communication, Systems, Simulation, Model, Transportation, Strategy
Related items