Font Size: a A A

Systematic analysis of aircraft separation requirements

Posted on:2006-07-02Degree:Ph.DType:Dissertation
University:University of MinnesotaCandidate:Ennis, Rachelle LeaFull Text:PDF
GTID:1452390008474240Subject:Engineering
Abstract/Summary:PDF Full Text Request
Minimum separation standards are necessary for safety in the air traffic control system. At the same time, minimum separation standards constrain the flow of air traffic and cause delays that translate to millions of dollars in fuel costs. Two necessary separation standards are defined. Then, practical methods for calculating the minimum required size of these separation standards are presented.; First, the protected zone is considered. The protected zone represents a region around a given aircraft that no other aircraft should penetrate for the safety of both aircraft. It defines minimum separation requirements. Three major components of the protected zone and their interplays are identified: a vortex region, a safety buffer region, and a state-uncertainty region. A systematic procedure is devised for the analysis of the state-uncertainty region. In particular, models of trajectory controls are developed that can be used to represent different modes of pilot and/or autopilot controls, such as path feedback and non-path feedback. Composite protected zones under various conditions are estimated, and effective ways to reduce sizes of protected zones for advanced air traffic management are examined.; In order to maintain minimum separation standards between two aircraft, proper avoidance maneuvers must be initiated before their relative separation reaches the minimum separation due to aircraft dynamics, controller and pilot response delays, etc. The concept of the required action threshold is presented. It is defined as the advanced time for which the conflict resolution process must begin in order to maintain minimum separation requirements. Five main segments in the process of conflict resolution are identified, discussed, and modeled: state information acquisition, comprehension and decision, communication, pilot response, and aircraft maneuver. Each of the five segments is modeled via a time constant. Time estimates for the first four segments are obtained from available literature. The aircraft maneuver time constant is evaluated through extensive simulation work, which considers the effects of the uncertainties involved in aircraft flight, different aircraft conflict geometries and the use of different control authorities in preventing the conflict. The models and simulation are then used to determine ranges in estimates for the required action threshold.
Keywords/Search Tags:Separation, Aircraft, Time, Conflict
PDF Full Text Request
Related items