Font Size: a A A

Development of electro-optic systems for self cleaning concentrated solar reflectors

Posted on:2017-04-08Degree:Ph.DType:Dissertation
University:Boston UniversityCandidate:Stark, Jeremy WFull Text:PDF
GTID:1452390005980578Subject:Electrical engineering
Abstract/Summary:
The current demand for energy usage in the world is increasing at a rapid pace; in China alone, the electricity usage has increased by 12% per year from 2006-2010, where more than 75% of electrical power is produced by coal burning facilities. Numerous studies have shown the effects of carbon dioxide emissions on global climate change, and even showing the permanence of high carbon dioxide levels after emissions cease. Current trends away from carbon emitting power facilities are pushing solar energy into a position for many new solar power plants to be constructed. Terrestrial solar energy at AM1.5 is generally given at 1kW/m2, which is a vast free source of energy that can be be harvested to meet the global demand for electricity. Aside from some areas receiving intermittent levels of solar insolation, one of the largest hindrances to large scale solar power production is obscuration of sunlight on solar collectors caused by dust deposition. In areas with the highest average solar insolation, dust deposition is a major problem for maintaining a constant maximum power output. The southern Negev desert in Israel receives on average 17g/m2 per month in dust deposition on solar installations, which in turn causes losses of a third of the total power output of the installation. In these areas, water is a scarce commodity, which can only be used to clean solar installations at a prohibitive cost.;To resolve this problem, a cost effective solution would be the application of electrodynamic screens (EDS), which can be implemented by embedding a set of parallel electrodes into the sun facing surface of solar collectors, including concentrating mirrors or photovoltaic (PV) modules, and applying a low frequency pulsed voltage to these electrodes. Three major contributions made in the course of this research in advancing (EDS) for self-cleaning solar mirrors are: (1) development of non-contact specular reflectometer for solar mirrors that allows measurement of reflectance loss as a function of dust deposition, (2) development of a dust deposition analyzer capable of measuring size distribution of deposited dust and provides mass concentration of dust on the surface of the mirror, and (3) optimization of electrode geometry of EDS film for minimizing optical reflection losses caused by the lamination of the film on the mirror surface while maintaining high reflection efficiency with high dust removal efficiency. The non-contact specular reflectometer and the dust deposition analyzer allowed experimental investigation of reflection losses as functions of surface mass concentration of dust on mirrors for validation of the optical model presented in this study.
Keywords/Search Tags:Solar, Dust, Development, Energy, Surface, Mirrors
Related items