Font Size: a A A

Damage analysis of particulate biocomposites using finite element technique

Posted on:2006-07-20Degree:Ph.DType:Dissertation
University:Hong Kong Polytechnic University (People's Republic of China)Candidate:Fan, Jian-PingFull Text:PDF
GTID:1452390005496601Subject:Applied mechanics
Abstract/Summary:
The objective of this project is to develop a scientific approach for predicting the mechanical properties and the failure process of PRPBs by simulating the damage mechanism of PRPB at mesoscopic level. In a tertiary phase representative volume element, particle-matrix debonding and matrix damage have been taken into account to model the damage mechanism. After validation of the results from the mesoscopic studies, the damage constitutive and evolution equations for mechanistic structural analyses can be established. Several kinds of unit cell models together with superelement techniques have been incorporated in a finite element code ABAQUS.; With a newly designed three-dimensional unit cell model, three new different schemes have been initially proposed in this project to predict the flexural properties of hydroxyapatite-reinforced poly-l-lactide acid (HA/PLLA) biocomposite. The computational results are in good agreement with the Chow's empirical formula and the experimental data. Using a hybrid micro-macro modelling technique, the three-phase cell model has also been applied to predict the elasto-plastic properties of HA/PEEK biocomposite. Ductile damage evolution in the matrix has been adopted and a failure criterion was established using the damage law. In comparison of the results with the experimental ones, the hybrid micro-macro modelling technique is applicable for modelling the mechanical properties of PRPB.; It is amongst the first attempt, the damage mechanism of this biocomposite has been revealed and modelled quantitatively taking into consideration the effect of water sorption. By combining this with the hybrid micro-macro modelling technique, the method to simulate the stress and displacement of an idealised restoration-tooth structure under both polymerisation shrinkage and water sorption has been developed.; This project has been conducted, in the first instance, to incorporate the concept of damage mechanics to develop a hybrid micro-macro technique that can be applied to simulate the local damage mechanism, the constitutive behaviours, and the structural properties of PRPBs. The deliverables of the project not only provided a means for designing PRPBs, but also opened a door for further extending the damage theory in analyzing biomaterials and their structures.
Keywords/Search Tags:Damage, Hybrid micro-macro modelling technique, Biocomposite, Using, Element, Project
Related items