Font Size: a A A

Self -assembly and design of tunable soft materials

Posted on:2015-05-25Degree:Ph.DType:Dissertation
University:University of California, MercedCandidate:Pandolfi, Ronald JFull Text:PDF
GTID:1451390005481546Subject:Condensed matter physics
Abstract/Summary:
Soft materials are a diverse and rich field of interest. Materials which form structure by their own self-assembly are of special interest. New material properties can be achieved by the self-assembly of constituent soft matter. Two soft matter systems are investigated in this dissertation from different perspectives. An in silico approach is applied to explore semiflexible polymers; X-ray scattering is applied to probe QD-LC composites.;Semiflexible polymers can generate a range of filamentous networks significantly different in structure from those seen in conventional polymer solutions. Our coarse-grained simulations with an implicit cross-linker potential show that networks of branching bundles, knotted morphologies, and structural chirality can be generated by a generalized approach independent of specific cross-linkers. Network structure depends primarily on filament flexibility and separation, with significant connectivity increase after percolation. Results should guide the design of engineered semiflexible polymers.;Thermotropic liquid crystal provides an active basis for organization of nanoparticles. Using a bottom-up approach, nanoparticles well dispersed in the isotropic phase can be self-assembled by exclusion from the nematic phase as the material cools from the isotropic phase. A ligand exchange reaction can be used to create nanoparticles with mesogenic ligand coatings to allow better dispersion and assemble novel structures. Small angle X-ray scattering is used to inform the structure of a variety of materials which apply this design concept. These metamaterials have tunable properties with applications in quantum dot based electro-optic devices and more.
Keywords/Search Tags:Materials, Soft, Structure
Related items