Font Size: a A A

A formulation of multidimensional growth models for the assessment and forecast of technology attributes

Posted on:2007-03-27Degree:Ph.DType:Dissertation
University:Georgia Institute of TechnologyCandidate:Danner, Travis WFull Text:PDF
GTID:1449390005471372Subject:Engineering
Abstract/Summary:
Developing technology systems requires all manner of investment---engineering talent, prototypes, test facilities, and more. Even for simple design problems the investment can be substantial; for complex technology systems, the development costs can be staggering. The profitability of a corporation in a technology-driven industry is crucially dependent on maximizing the effectiveness of research and development investment. Decision-makers charged with allocation of this investment are forced to choose between the further evolution of existing technologies and the pursuit of revolutionary technologies. At risk on the one hand is excessive investment in an evolutionary technology which has only limited availability for further improvement. On the other hand, the pursuit of a revolutionary technology may mean abandoning momentum and the potential for substantial evolutionary improvement resulting from the years of accumulated knowledge. The informed answer to this question, evolutionary or revolutionary, requires knowledge of the expected rate of improvement and the potential a technology offers for further improvement. This research is dedicated to formulating the assessment and forecasting tools necessary to acquire this knowledge.; The same physical laws and principles that enable the development and improvement of specific technologies also limit the ultimate capability of those technologies. Researchers have long used this concept as the foundation for modeling technological advancement through extrapolation by analogy to biological growth models. These models are employed to depict technology development as it asymptotically approaches limits established by the fundamental principles on which the technological approach is based. This has proven an effective and accurate approach to modeling and forecasting simple single-attribute technologies. With increased system complexity and the introduction of multiple system objectives, however, the usefulness of this modeling technique begins to diminish.; With the introduction of multiple objectives, researchers often abandon technology growth models for scoring models and technology frontiers. While both approaches possess advantages over current growth models for the assessment of multi-objective technologies, each lacks a necessary dimension for comprehensive technology assessment. By collapsing multiple system metrics into a single, non-intuitive technology measure, scoring models provide a succinct framework for multi-objective technology assessment and forecasting. Yet, with no consideration of physical limits, scoring models provide no insight as to the feasibility of a particular combination of system capabilities. They only indicate that a given combination of system capabilities yields a particular score. Conversely, technology frontiers are constructed with the distinct objective of providing insight into the feasibility of system capability combinations. Yet again, upper limits to overall system performance are ignored. Furthermore, the data required to forecast subsequent technology frontiers is often inhibitive.; In an attempt to reincorporate the fundamental nature of technology advancement as bound by physical principles, researchers have sought to normalize multi-objective systems whereby the variability of a single system objective is eliminated as a result of changes in the remaining objectives. This drastically limits the applicability of the resulting technology model because it is only applicable for a single setting of all other system attributes. Attempts to maintain the interaction between the growth curves of each technical objective of a complex system have thus far been limited to qualitative and subjective consideration.; This research proposes the formulation of multidimensional growth models as an approach to simulating the advancement of multi-objective technologies towards their upper limits. Multidimensional growth models were formulated by noticin...
Keywords/Search Tags:Technology, Growth models, System, Assessment, Technologies, Limits, Investment, Multi-objective
Related items