Font Size: a A A

Length Adaptive Processors: A solution for the energy/performance dilemma in embedded systems

Posted on:2010-04-10Degree:Ph.DType:Dissertation
University:North Carolina State UniversityCandidate:Iyer, Balaji ViswanathanFull Text:PDF
GTID:1448390002976931Subject:Engineering
Abstract/Summary:
Embedded-handheld devices are the predominant computing platform today. These devices are required to perform complex tasks yet run on batteries. Some architects use ASIC to combat this energy-performance dilemma. Even though they are efficient in solving this problem, an ASIC can cause code-compatibility problems for the future generations. Thus, it is necessary for a general purpose solution. Furthermore, no single processor configuration provides the best energy-performance solution over a diverse set of applications or even throughout the life of a single application. As a result, the processor needs to be adaptable to the specific workload behavior. Code-generation and code-compatibility are the biggest challenges in such adaptable processors.;At the same time, embedded systems have fixed energy source such as a 1-Volt battery. Thus, the energy consumption of these devices must be predicted with utmost accuracy. A gross miscalculation can cause the system to be cumbersome for the user.;In this work, we provide a new paradigm of embedded processors called Dynamic Length-Adaptive Processors that have the flexibility of a general purpose processor with the specialization of an ASIC. We create such a processor called Clustered Length-Adaptive Word Processor (CLAW) that is able to dynamically modify its issue width with one VLIW instruction overhead. This processor is designed in Verilog, synthesized, DRC-checked, and placed and routed. Its energy and performance values are reported using industrial-strength transistor-level analysis tools to dispel several myths that were thought to be dominating factors in embedded systems.;To compile benchmarks for the CLAW processor, we provide the necessary software tools that help produce optimized code for performance improvement and energy reduction, and discuss some of the code-generation procedures and challenges.;Second, we try and understand the code-generator patterns of the compiler by sampling a representative application and design an ISA opcode-configuration that helps minimize the energy necessary to decode the instructions with no performance-loss. We discover that having a well designed opcode-configuration, not only reduces energy in the decoder by also other units such as the fetch and exception units. Moreover, the sizable amount of energy reduction can be achieved in a diverse set of applications.;Next, we try to reduce the energy consumption and power-dissipation of register-read and register-writes by using popular common-value register-sharing techniques that are used to enhance performance. We provide a power-model for these structures based on the value localities of the application. Finally, we perform a case-study using the IEEE 802.11n PHY Transmitter and Decoder and identify its energy-hungry units. Then, we apply our techniques and show that CLAW is a solution for such hybrid complex algorithms for providing high-performance while reducing the total energy.
Keywords/Search Tags:Energy, Solution, Embedded, Processor, Performance, CLAW
Related items