Font Size: a A A

Numerical methods for forward and inverse problems in optical imaging

Posted on:2011-09-05Degree:Ph.DType:Dissertation
University:University of California, IrvineCandidate:Gao, HaoFull Text:PDF
GTID:1448390002455653Subject:Mathematics
Abstract/Summary:
The main objective of this work is to develop efficient and accurate numerical algorithms for mathematical problems in optical imaging: forward modeling and inverse problems. Radiative transfer equation (RTE) can be regarded as the gold standard of modeling in vivo photon migration, however an efficient solver of RTE is extremely computationally challenging. In this work we develop a fast multigrid solver for steady-state or frequency-domain RTE on 2D and 3D structured and unstructured meshes with vacuum or reflection boundary condition. The error estimate and convergence analysis of the algorithm is given. The subsequent effort is devoted to quantitatively improve the reconstruction from ill-posed problems, such as multilevel approach with L1+TV regularization for bioluminescence tomography, multilevel regularization for diffuse optical tomography, linear complex-source method for fluorescence tomography, and Bregman method for quantitative photoacoustic tomography. Most of the developed methods are general in the sense that they are not limited to a particular reconstruction problem and can be combined in a synergetic way.
Keywords/Search Tags:Optical
Related items