Font Size: a A A

Analysis of beta-amyloid aggregation and amyloid precursor protein dimerization

Posted on:2007-09-27Degree:Ph.DType:Dissertation
University:University of Toronto (Canada)Candidate:Gorman, Paul MFull Text:PDF
GTID:1444390005470316Subject:Biology
Abstract/Summary:PDF Full Text Request
Alzheimer's Disease (AD) is a neuropathological disorder characterized by the progressive deposition of insoluble amyloid plaques and vascular deposits consisting primarily of 4.5 kDa amyloid beta peptides (Abeta). There is increasing evidence that the deposition of Abeta fibrils in the brain, an invariable feature of AD, and/or prefibrillar aggregates likely cause neurodegeneration in AD. While Abeta fibrils were a previous research focus, recent experiments implicate prefibrillar aggregates as the toxic species. The identification and characterization of prefibrillar aggregates is of great importance to understanding AD and the development of therapeutic strategies.; Diffuse plaques, containing only the 42-residue form of Abeta, are unstructured and non-toxic; they appear before toxic senile plaques containing both 40 and 42-residue forms. Through incubation, Abeta40 and Abeta42 were shown to co-incorporate into unstructured aggregates early during fibrillogenesis later leading to tightly packed aggregates with secondary structure. Previously, the stage at which the Abeta variants co-incorporated during the fibrillogenic process was unknown.; Biophysical and spectroscopic techniques were used to examine the effects of electrostatic interactions on Abeta oligomerization. Experimental work demonstrated that, while salt bridges likely provide stability to preformed Abeta aggregates, these interactions are not essential for the early stages of aggregation. Abeta oligomerization is driven by the formation of pH-independent interactions and is impeded by electrostatic repulsion at pH values away from the isoelectric point.; Further experimentation led to the discovery of non-denaturing detergents that stabilize suspected on-pathway spherical Abeta aggregates. These detergent-stabilized Abeta oligomers share many of the structural features and biological activities of both membrane bound Abeta and spherical oligomers of Abeta formed in solution. Thus, these stabilizing detergents may prove useful in high-resolution structural analysis of spherical oligomers.; After observing that the amyloid precursor protein transmembrane (APP-TM) domain contains two known dimerization motifs (GXXXG/A), oligomerization of the APP-TM domain was examined. A model system was developed to investigate the effects of familial AD mutations on the dimerization propensity of APP-TM domains. This work culminated in the first experimentally supported mechanism to explain how genetic mutations within the APP gene lead to the observed phenotype and predisposition to AD.
Keywords/Search Tags:Amyloid, Abeta
PDF Full Text Request
Related items