Font Size: a A A

Design and application of chitosan/biphasic calcium phosphate porous scaffolds for bone tissue engineering

Posted on:2007-08-19Degree:Ph.DType:Dissertation
University:University of Illinois at Urbana-ChampaignCandidate:Sendemir-Urkmez, AylinFull Text:PDF
GTID:1444390005465564Subject:Engineering
Abstract/Summary:
For the restoration of maxillofacial bone tissue, design of novel tissue engineering scaffolds capable of inducing bone remodeling through the delivery of mesenchymal stem cells (MSCs) and an angiogenic growth factor, directly at the site of the defect was investigated in order to replace autogenous cancellous bone grafts with synthetic materials.; Porous, three dimensional scaffolds were fabricated by a freeze drying method. In culture media, biphasic calcium phosphate particles within chitosan produced a surface reprecipitate of a composition similar to natural apatite that led to a uniform distribution of cells and mineralized ECM through chemotaxis. Further, the reprecipitation regulated the differentiation pathway and phenotype commitment of stem cells by altering the initial cell attachment morphology and actin cytoskeleton organization.; In order to induce neovascularization after implantation, constructs were designed to be loaded with gelatin microspheres that delivered basic fibroblast growth factor (bFGF), a potent angiogenic factor. In vitro proliferation tests performed on fibroblastic cells showed no detectible loss of bFGF activity when delivered through enzymatic degradation of gelatin. Laser scanning confocal microscopy was used to demonstrate that gelatin microspheres can be injected evenly into cell-scaffold constructs owing to the spongy characteristics of the scaffold. To examine the binding interactions of bFGF with surface bound gelatin, a label free biosensor system, Biomolecular INteraction Detection sensor (BIND) was used. Results confirm that the principal interaction that takes place between bFGF and gelatin is electrostatic.; Cell loaded tissue engineered constructs were produced in vitro at clinically relevant sizes and implanted with and without bFGF into a porcine mandibular defect model. Tissue engineered constructs facilitated the healing of mandibular defects only if combined with delivery of bFGF via gelatin microspheres. bFGF release from the constructs improved neovascularization in the defect area and subsequently enhanced new bone formation. Although the rate and extent of bone formation was similar in bFGF group to those in empty defects for the period of the study, existence of woven bone in bFGF group suggests that bone formation is continuing while the lamellar structure in empty defects indicates that bone formation in that group was finalized.
Keywords/Search Tags:Tissue, Bone formation, Scaffolds, Bfgf
Related items