Font Size: a A A

Biomolecular strategies for cell surface engineering

Posted on:2010-12-02Degree:Ph.DType:Dissertation
University:Georgia Institute of TechnologyCandidate:Wilson, John TannerFull Text:PDF
GTID:1444390002481442Subject:Chemistry
Abstract/Summary:
Islet transplantation has emerged as a promising cell-based therapy for the treatment of diabetes, but its clinical efficacy remains limited by deleterious host responses that underlie islet destruction. In this dissertation, we describe the assembly of ultrathin conformal coatings that confer molecular-level control over the composition and biophysicochemical properties of the islet surface with implications for improving islet engraftment. Significantly, this work provides novel biomolecular strategies for cell surface engineering with broad biomedical and biotechnological applications in cell-based therapeutics and beyond.;Encapsulation of cells and tissue offers a rational approach for attenuating deleterious host responses towards transplanted cells, but a need exists to develop cell encapsulation strategies that minimize transplant volume. Towards this end, we endeavored to generate nanothin films of diverse architecture with tunable properties on the extracellular surface of individual pancreatic islets through a process of layer-by-layer (LbL) self assembly. We first describe the formation of poly(ethylene glycol) (PEG)-rich conformal coatings on islets via LbL self assembly of poly(L-lysine)-g-PEG(biotin) and streptavidin. Multilayer thin films conformed to the geometrically and chemically heterogeneous islet surface, and could be assembled without loss of islet viability or function. Significantly, coated islets performed comparably to untreated controls in a murine model of allogenic intraportal islet transplantation, and, to our knowledge, this is the first study to report in vivo survival and function of nanoencapsulated cells or cell aggregates.;Based on these findings, we next postulated that structurally similar PLL-g-PEG copolymers comprised of shorter PEG grafts might be used to initiate and propagate the assembly of polyelectrolyte multilayer (PEM) films on pancreatic islets, while simultaneously preserving islet viability. Through control of PLL backbone molecular weight, PEG chain length, and grafting ratio, PLL-g-PEG copolymers were rendered cytocompatible and used to initiate and propagate the growth of cell surface-supported PEM films. Planar characterization of this novel class of PEM films indicated that film thickness and composition may be tailored through appropriate control of layer number and copolymer properties. Furthermore, these investigations have helped establish a conceptual framework for the rational design of cell surface-supported thin films, with the objective of translating the diverse biomedical and biotechnological applications of PEM films to cellular interfaces.;Important to the development of effective conformal islet coatings is an inherent strategy through which to incorporate bioactive molecules for directing desired biochemical or cellular responses. Towards this end, PLL-g-PEG copolymers functionalized with biotin, azide, and hydrazide moieties were synthesized and used, either alone or in combination, to capture streptavidin-, triphenylphosphine-, and aldehyde-labeled probes, respectively, on the islet surface. Additionally, PEM films assembled using alginate chemically modified to contain aldehyde groups could be used to introduce hydrazide-functionalized molecules to the islet surface. Hence, modified film constituents may be used as modular elements for controlling the chemical composition cell and tissue surfaces.;Finally, we report a strategy for tethering thrombomodulin (TM) to the islet surface. Through site-specific, C-terminal biotinylation of TM and optimization of cell surface biotinylation, TM could be integrated with the islet surface. Re-engineering of islet surfaces with TM resulted in an increased catalytic capacity of islets to generate the powerful anti-inflammatory agent, activated protein C (APC), thereby providing a facile strategy for increasing the local concentration of APC at the site of transplantation.
Keywords/Search Tags:Cell, Surface, Islet, PEM films, Transplantation, Strategies
Related items