Font Size: a A A

Delineation of excessive strength soils through acoustic to seismic techniques

Posted on:2008-08-29Degree:Ph.DType:Dissertation
University:The University of MississippiCandidate:Howard, Wheeler BFull Text:PDF
GTID:1442390005467054Subject:Geophysics
Abstract/Summary:
Soils overlying a naturally occurring hardpans, such as a fragipan, normally experience decreased crop yield and increased erosion rates. The motivation for this work stems from the desire to map the fragipan horizon in order to judiciously distribute agricultural resources. Currently, the fragipan horizon is mapped via core samples, auger holes, cone penetrometer measurements, and trench studies. The focus of this study is the application of a/s coupling techniques, which are less invasive, potentially more expedient, and inherently sensitive to changes in mechanical properties, to determine the depth to the fragipan. Previous investigations correlated various attributes of the acoustic to seismic (a/s) signature to physical quantities of the soil. These results showed promise for characterizing the near surface distribution of the soil's mechanical properties.; This work further refines the a/s coupling technique to determine the depth to the soil-fragipan interface and the mechanical properties of the soil-fragipan system. The a/s coupling signature was measured at two field sites along with seismic refraction, cone penetrometer, trench, and core sample surveys. The ground truth served as a guide for the inversion of the a/s coupling field data. A multi-layered Thompson-Haskell viscoelastic forward model was employed to model the a,/s signature of the soil. Simulations with the forward model indicated that the a/s signature behaved as a quarter wavelength resonance prior to the onset of critical angles.Significant shins in the amplitude and frequency of the a/s signature occurred as critical angles were traversed. Inversion of svnthetic data via a hybrid algorithm was successful for both one and two layers over a half-space when the shear velocity was constrained. The measured a/s and modeled a/s signatures did not agree whether using the ground truth in modeling the als signature or comparing to the results from the a/s inversion. This may be because the a/s is sensitive to structure not recorded in the ground truth or included in the model. For example, the brecciated upper surface of the fragipan is being modeled as a sharp interface.
Keywords/Search Tags:Fragipan, A/s, Seismic, Model
Related items