Font Size: a A A

A process for the quantification of aircraft noise and emissions interdependencies

Posted on:2009-06-09Degree:Ph.DType:Dissertation
University:Georgia Institute of TechnologyCandidate:de Luis, JorgeFull Text:PDF
GTID:1442390005454396Subject:Engineering
Abstract/Summary:
The main purpose of this dissertation is to develop a process to improve actual policy-making procedures in terms of aviation environmental effects. This research work expands current practices with physics based publicly available models. The current method uses solely information provided by industry members, and this information is usually proprietary, and not physically intuitive. The process herein proposed provides information regarding the interdependencies between the environmental effects of aircraft. These interdependencies are also tied to the actual physical parameters of the aircraft and the engine, making it more intuitive for decision-makers to understand the impacts to the vehicle due to different policy scenarios.;These scenarios involve the use of fleet analysis tools in which the existing aircraft are used to predict the environmental effects of imposing new stringency levels. The aircraft used are reduced to a series of coefficients that represent their performance, in terms of flight characteristics, fuel burn, noise, and emissions. These coefficients are then utilized to model flight operations and calculate what the environmental impacts of those aircraft are. If a particular aircraft does not meet the stringency to be analyzed, a technology response is applied to it, in order to meet that stringency. Depending on the level of reduction needed, this technology response can have an effect on the fuel burn characteristic of the aircraft.;Another important point of the current stringency analysis process is that it does not take into account both noise and emissions concurrently, but instead, it considers them separately, one at a time. This assumes that the interdependencies between the two do not exists, which is not realistic. The latest stringency process delineated in 2004 imposed a 2% fuel burn penalty for any required improvements on NOx, no matter the type of aircraft or engine, assuming that no company had the ability to produce a vehicle with similar characteristics. This left all the performance characteristics of the aircraft untouched, except for the fuel burn, including the noise performance.;The proposed alternative is to create a fleet of replacement aircraft to the current fleet that does not meet stringency. These replacement aircraft represent the achievable physical limits for state of the art systems. In this research work, the interdependencies between NOx, noise, and fuel burn are not neglected, and it is in fact necessary to take all three into account, simultaneously, to capture the physical limits that can be attained during a stringency analysis. In addition, the replacement aircraft show the linkage between environmental effects and fundamental aircraft and engine characteristics, something that has been neglected in previous policy making procedures. Another aspect that has been ignored is the creation of the coefficients used for the fleet analyses. In current literature, a defined process for the creation of those coefficients does not exist, but this research work develops a process to do so and demonstrates that the characteristics of the aircraft can be propagated to the coefficients and to the fleet analysis tools.;The implementation of the process proposed shows that, first, the environmental metrics can be linked to the physical attributes of the aircraft using non-proprietary, physics based tools, second, those interdependencies can be propagated to fleet level tools, and third, this propagation provides an improvement in the policy making process, by showing what needs to change in an aircraft to meet different stringency levels.
Keywords/Search Tags:Process, Aircraft, Stringency, Noise, Interdependencies, Making, Policy, Fuel burn
Related items