Font Size: a A A

BATMAV - A Bio-Inspired Micro-Aerial Vehicle for Flapping Flight

Posted on:2011-05-05Degree:Ph.DType:Dissertation
University:North Carolina State UniversityCandidate:Bunget, GheorgheFull Text:PDF
GTID:1442390002957080Subject:Engineering
Abstract/Summary:
The main objective of the BATMAV project is the development of a biologically-inspired Micro Aerial Vehicle (MAV) with flexible and foldable wings for flapping flight. While flapping flight in MAV has been previously studied and a number of models were realized they usually had unfoldable wings actuated with DC motors and mechanical transmission to achieve flapping motion. This approach limits the system to a rather small number of degrees of freedom with little flexibility and introduces an additional disadvantage of a heavy flight platform. The BATMAV project aims at the development of a flight platform that features bat-inspired wings with smart materials-based flexible joints and artificial muscles, which has the potential to closely mimic the kinematics of the real mammalian flyer. The bat-like flight platform was selected after an extensive analysis of morphological and aerodynamic flight parameters of small birds, bats and large insects characterized by a superior maneuverability and wind gust rejection. Morphological and aerodynamic parameters were collected from existing literature and compared concluding that bat wing present a suitable platform that can be actuated efficiently using artificial muscles. Due to their wing camber variation, the bat species can operate effectively at a large range of speeds and exhibit a remarkably maneuverable and agile flight.;Although numerous studies were recently investigated the flapping flight, flexible and foldable wings that reproduce the natural intricate and efficient flapping motion were not designed yet. A comprehensive analysis of flight styles in bats based on the data collected by Norberg (Norberg, 1976) and the engineering theory of robotic manipulators resulted in a 2 and 3-DOF models which managed to mimic the wingbeat cycle of the natural flyer. The flexible joints of the 2 and 2-DOF models were replicated using smart materials like superelastic Shape Memory Alloys (SMA). The results of these kinematic models can be used to optimize the lengths and the attachment locations of the actuator muscle-wires such that enough lift, thrust and wing stroke are obtained.;Bat skeleton measurements were taken from real bats and modeled in SolidWorks to accurately reproduce bones and body via rapid prototyping methods. Much attention was paid specifically to achieving the comparable strength, elasticity, and range of motion of a naturally occurring bat. The wing joints of the BATMAV platform were fabricated using superelastic Shape Memory Alloys (SMA), a key technology for the development of an engineering skeleton structure. This has enabled a simple and straightforward connection between different bones while at the same time has preserved the full range of functionality of the natural role model. Therefore, several desktop models were designed, fabricated and assembled in order to study various materials used in design phase. As a whole, the BATMAV project consists of four major stages of development: the current phase -- design and fabrication of the skeletal structure of the flight platform, selection and testing different materials for the design of a compliant bat-like membrane, analysis of the kinematics and kinetics of bat flight in order to design a biomechanical muscle system for actuation, and design of the electrical control architecture to coordinate the platform flight.
Keywords/Search Tags:Flight, BATMAV, Bat, Platform, Development, Flexible
Related items