Font Size: a A A

Voltage Stability Impact of Grid-Tied Photovoltaic Systems Utilizing Dynamic Reactive Power Control

Posted on:2011-10-19Degree:Ph.DType:Dissertation
University:University of South FloridaCandidate:Omole, AdedamolaFull Text:PDF
GTID:1442390002461013Subject:Alternative Energy
Abstract/Summary:
Photovoltaic (PV) DGs can be optimized to provide reactive power support to the grid, although this feature is currently rarely utilized as most DG systems are designed to operate with unity power factor and supply real power only to the grid. In this work, the voltage stability of a power system embedded with PV DG is examined in the context of the high reactive power requirement after a voltage sag or fault. A real-time dynamic multi-function power controller that enables renewable source PV DGs to provide the reactive power support necessary to maintain the voltage stability of the microgrid, and consequently, the wider power system is proposed.;The loadability limit necessary to maintain the voltage stability of an interconnected microgrid is determined by using bifurcation analysis to test for the singularity of the network Jacobian and load differential equations with and without the contribution of the DG. The maximum and minimum real and reactive power support permissible from the DG is obtained from the loadability limit and used as the limiting factors in controlling the real and reactive power contribution from the PV source. The designed controller regulates the voltage output based on instantaneous power theory at the point-of-common coupling (PCC) while the reactive power supply is controlled by means of the power factor and reactive current droop method. The control method is implemented in a modified IEEE 13-bus test feeder system using PSCADRTM power system analysis software and is applied to the model of a Tampa ElectricRTM PV installation at Lowry Park Zoo in Tampa, FL.;This dissertation accomplishes the systematic analysis of the voltage impact of a PV DG-embedded power distribution system. The method employed in this work bases the contribution of the PV resource on the voltage stability margins of the microgrid rather than the commonly used loss-of-load probability (LOLP) and effective load-carrying capability (ELCC) measures. The results of the proposed method show good improvement in the before-, during-, and post-start voltage levels at the motor terminals. The voltage stability margin approach provides the utility a more useful measure in sizing and locating PV resources to support the overall power system stability in an emerging smart grid.
Keywords/Search Tags:Reactive power, Stability, System
Related items