Font Size: a A A

Applications of the generalized DDA formalism, and, The nature of polarized light in deep oceans

Posted on:2009-12-06Degree:Ph.DType:Dissertation
University:Texas A&M UniversityCandidate:You, YuFull Text:PDF
GTID:1440390002999931Subject:Biology
Abstract/Summary:PDF Full Text Request
The first part of this study is focused on numerical studies of light scattering from a single microscopic particle using the Discrete Dipole Approximation (DDA) method. The conventional DDA formalism is generalized to two cases: (a) inelastic light scattering from a dielectric particle and (b) light scattering from a particle with magnetic permeability mu ≠ 1. The first generalization is applied to simulations of Raman scattering from bioaerosol particles, and the second generalization is applied to confirmation of irregular invisibility cloaks made from metamaterials.;In the second part, radiative transfer in a coupled atmosphere-ocean system is solved to study the asymptotic nature of the polarized light in deep oceans. The rate at which the radiance and the polarization approach their asymptotic forms in an ideal homogeneous water body are studied. Effects of the single scattering albedo and the volume scattering function are studied. A more realistic water body with vertical profiles for oceanic optical properties determined by a Case 1 water model is then assumed to study the effects of wavelength, Raman scattering, and surface waves.;Simulated Raman scattering patterns computed from the generalized DDA formalism are found to be sensitive to the distribution of Raman active molecules in the host particle. Therefore one can infer how the Raman active molecules are distributed from a measured Raman scattering pattern. Material properties of invisibility cloaks with a few irregular geometries are given, and field distributions in the vicinity of the cloaked particles computed from the generalized DDA formalism confirm that the designated material properties lead to invisibility. The radiative transfer model calculation in deep oceans suggest that the underwater radiance approaches its asymptotic form more quickly than the polarization does. Therefore, a vector radiative transfer solution is necessary for asymptotic light field studies. For a typical homogeneous water body whose scattering property is characterized by the Petzold phase function, a single scattering albedo of o0 > 0.8 is required in order that the asymptotic regime can be reached before there are too few photons to be detected.
Keywords/Search Tags:Generalized DDA formalism, Light, Scattering, Asymptotic, Particle
PDF Full Text Request
Related items