Font Size: a A A

Acoustic propagation in the Hudson River Estuary: Analysis of experimental measurements and numerical modeling results

Posted on:2010-03-08Degree:Ph.DType:Dissertation
University:Stevens Institute of TechnologyCandidate:Radhakrishnan, SreeramFull Text:PDF
GTID:1440390002471595Subject:Physical oceanography
Abstract/Summary:
Underwater intrusion detection is an ongoing security concern in port and harbor areas. Of particular interest is to detect SCUBA divers, unmanned underwater vehicles and small boats from their acoustic signature. A thorough understanding of the effects of the shallow water propagating medium on acoustic signals can help develop new technologies and improve the performance of existing acoustic based surveillance systems. The Hudson River Estuary provides us with such a shallow water medium to conduct research and improve our knowledge of shallow water acoustics. Acoustic propagation in the Hudson River Estuary is highly affected by the temporal and spatial variability of salinity and temperature due to tides, freshwater inflows, winds etc. The primary goal of this research is to help develop methodologies to predict the formation of an acoustic field in the realistic environment of the lower Hudson River Estuary. Shallow water high-frequency acoustic propagation experiments were conducted in the Hudson River near Hoboken, New Jersey. Channel Impulse Response (CIR) measurements were carried out in the frequency band from 10 to 100 kHz for distances up to 200 meters in a water depth of 8-10 meters which formed the basis for experimental Transmission Loss (TL). CIR data was also utilized to demonstrate multi-path propagation in shallow water. Acoustic propagation models based on Ray Theory and Parabolic Equation methods were implemented in the frequency band from 10 to 100 kHz and TL was estimated. The sound velocity profiles required as input by acoustic propagation models were calculated from in-situ measurements of temperature, salinity and depth. Surface reflection loss was obtained from CIR data and incorporated into the acoustic propagation models. Experimentally obtained TL was used to validate the acoustic model predictions. An outcome of this research is an operational acoustic transmission loss (TL) forecast system based on the existing, Stevens New York Harbor observation and prediction system (NYHOPS) which provides 48-hour forecasts of salinity and temperature profiles. Initial results indicate that the NYHOPS forecast of sound speed profiles used in conjunction with the acoustic propagation model is able to make realistic forecasts of TL in the Hudson River Estuary.
Keywords/Search Tags:Hudson river estuary, Acoustic propagation, Water, Measurements
Related items