Font Size: a A A

Development and understanding of multifunctional gold nanorings for photodynamic therapy of cancer

Posted on:2016-06-07Degree:Ph.DType:Thesis
University:Stevens Institute of TechnologyCandidate:Hu, YueFull Text:PDF
GTID:2474390017974789Subject:Materials science
Abstract/Summary:
Gold nanostructures of various geometries and dimensions are being broadly explored in the fast expanding field of nanomedicine due to the unusual combination of biocompatibility, versatility of surface functionalization, and localized surface-plasmon resonance (LSPR). Examples of relevant applications include biomedical imaging, clinical diagnostics and therapeutics. Gold nanorings (Au NRs) are of particular interest because of their intricate structure and LSPR tunability over a wide wavelength range. A solution-based synthesis approach is yet to be developed, however, to allow exploration of Au NRs for basic and applied studies. This dissertation focuses on the fabrication, characterization, and evaluation of colloidal Au NRs for enhanced photodynamic therapy (PDT) of breast cancer cells. We have developed a novel synthesis strategy and associated pathways toward Au NRs by galvanic replacement reaction of Co nanoparticles (Co NPs) in HAuCl4 solution. We have shown that surface-chemistry mediated particle-particle interaction of the Co NPs that leads to their 1D chain-like assembly as sacrificial template is critically important for the growth of Au NRs. Otherwise, Au nanoshells or Au nanotubes may result. The Au NRs exhibit tunable LSPR wavelengths from visible to near-infrared (NIR) region via varying the aspect ratio, in agreement with our theoretical calculations using the finite-difference time domain (FDTD) method. A layer-by-layer (LbL) assembly method was used to load Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS4) photosensitizer (PS) onto the surface of Au NRs. We have revealed that the photosensitivity of AlPcS4 can be quenched unless desorbed from the surface of Au NRs in the cellular compartment. An eight-fold increase in PDT killing efficiency of human breast cancer cells (MDA-MB-231) has been achieved using LbL-assembled AlPcS4-Au NR complexes in comparison to AlPcS4 only or the mixture of AlPcS 4 and Au NRs. This strategy allows reliable delivery of PS to targeted cells and exploits the LSPR of Au NRs in NIR to generate elevated singlet oxygen species (1O2) for destruction of cancer cells. Furthermore, we have shown that Au NR-enhanced 1O2 generation could be optimized by proper combination of the LSPR wavelength of Au NRs and the spacing between AlPcS4 and Au NRs. Our research findings together with the mechanistic understanding have the potential to facilitate the clinical translation of Au NRs for greatly improved PDT efficacy of cancer treatment.
Keywords/Search Tags:Au nrs, Cancer, PDT, LSPR
Related items