Font Size: a A A

Development of Electro-Mechanical Spinning for Controlled Deposition of Carbon Nanofibers

Posted on:2015-07-22Degree:Ph.DType:Thesis
University:University of California, IrvineCandidate:Canton, GiuliaFull Text:PDF
GTID:2471390017995278Subject:Nanotechnology
Abstract/Summary:
In the past few decades the fields of nanotechnology and miniaturized devices had an exponentially growth of interest in academic and research environment, leading to breakthroughs discoveries that are envisioned to have a profound impact on our economy and society in the near future. Recently, the focus is moving toward the development of technologies that enable the production of micro- /nano-devices on a larger scale and at lower costs. Among the different micro- /nano-devices manufacturing challenges, in this dissertation the aim is to reliably fabricate suspend carbon micro- /nano-fibers between two carbon electrode walls in a way that can be mass produced at relatively low cost.;The first part of this thesis provides an in depth overview of current methods used for the fabrication of carbon based micro devices (C-MEMS) and of electrospinning, a manufacturing technology that emerges as a simple and inexpensive approach to produce nanofibers. Electro-Mechanical Spinning (EMS) has been developed from electrospinning and optimized for the production of suspended carbon nanofibers, aiming to achieve greater deposition control at the single nanofiber level, while maintaining the low cost of electrospinning.;After the successful development of EMS, the so fabricated carbon micro- /nano-fibers have been characterized, first from the electrical point of view, then from the mechanical one. The electrical characterization involves conductivity measurements of fibers with respect of different and controllable manufacturing processes steps. Variations of those manufacturing parameters have been proven to be capable of tailoring the carbon structure and, therefore, the conductivity of the fibers within a desired range. Further investigation regarding the electrical properties was also conducted to prevent (or control) current induced fiber breakdown. Finally, the Young's modulus of those fibers was investigated and observed to be dependent on the fibers thickness. Similarly to conductivity, variations in Young's modulus are also related to formation of a different carbon structure when fibers diameter is below certain values. In conclusion, appropriate combinations of EMS and C-MEMS processes were proven to be capable of fabricating controllable suspended carbon nanofibers with tuned conductivity and Young's modulus properties.
Keywords/Search Tags:Carbon, Fibers, Young's modulus, EMS, Development, Conductivity
Related items